QUEUE(3) FreeBSD Library Functions Manual QUEUE(3)

NAME
SLIST_CLASS ENTRY, SLIST_CLASS HEAD, SLIST_CONCAT, SLIST_EMPTY,
SLIST_ENTRY, SLIST_FIRST, SLIST_FOREACH, SLIST_FOREACH_FROM,
SLIST_FOREACH_FROM_SAFE, SLIST_FOREACH_SAFE, SLIST_HEAD,
SLIST_HEAD_INITIALIZER, SLIST_INIT, SLIST_INSERT_AFTER, SLIST_INSERT_HEAD,
SLIST _NEXT,SLIST REMOVE, SLIST REMOVE_AFTER, SLIST_ REMOVE_HEAD,
SLIST_SWAP, STAILQ CLASS ENTRY, STAILQ CLASS HEAD, STAILQ_CONCAT,
STAILQ_EMPTY, STAILQ_ENTRY, STAILQ _FIRST, STAILQ_FOREACH,
STAILQ _FOREACH_FROM, STAILQ_FOREACH_FROM_SAFE, STAILQ_FOREACH_SAFE,
STAILQ HEAD, STAILQ_HEAD_INITIALIZER, STAILQ_INIT, STAILQ_INSERT_AFTER,
STAILQ _INSERT_HEAD, STAILQ_INSERT_TAIL, STAILQ_LAST, STAILQ_NEXT,
STAILQ_REMOVE, STAILQ_REMOVE_AFTER, STAILQ_REMOVE_HEAD, STAILQ_SWAP,
LIST_CLASS ENTRY, LIST_CLASS HEAD, LIST_CONCAT, LIST_EMPTY, LIST_ENTRY,
LIST _FIRST,LIST _FOREACH, LIST FOREACH FROM, LIST_FOREACH FROM _SAFE,
LIST FOREACH SAFE, LIST HEAD,LIST HEAD INITIALIZER, LIST INIT,
LIST_INSERT_AFTER, LIST_INSERT_BEFORE, LIST_INSERT_HEAD, LIST_NEXT,
LIST_PREV, LIST_REMOVE, LIST_SWAP, TAILQ _CLASS ENTRY, TAILQ_CLASS HEAD,
TAILQ_CONCAT, TAILQ_EMPTY, TAILQ_ENTRY, TAILQ_FIRST, TAILQ_FOREACH,
TAILQ_FOREACH_FROM, TAILQ FOREACH_FROM_SAFE, TAILQ_FOREACH_REVERSE,
TAILQ_FOREACH_REVERSE_FROM, TAILQ_FOREACH_REVERSE_FROM_SAFE,
TAILQ_FOREACH_REVERSE_SAFE, TAILQ _FOREACH_SAFE, TAILQ_HEAD,
TAILQ HEAD_INITIALIZER, TAILQ_INIT, TAILQ_INSERT_AFTER, TAILQ_INSERT_BEFORE,
TAILQ_INSERT_HEAD, TAILQ_INSERT_TAIL, TAILQ LAST, TAILQ _NEXT, TAILQ PREV,
TAILQ_REMOVE, TAILQ_SWAP - implementations of singly-linked lists, singly-linked tail queues,
listsand tail queues

SYNOPSIS
#include <sys/queue.h>

SLIST_CLASS ENTRY (CLASSTYPE);

SLIST_CLASS HEAD(HEADNAME, CLASSTYPE);

SLIST_CONCAT(SLIST_HEAD *headl, SLIST_HEAD *head2, TYPE, SLIST_ENTRY NAME);
SLIST_EMPTY (SLIST_HEAD *head);

SLIST_ENTRY(TYPE);

SLIST_FIRST(SLIST_HEAD *head);

FreeBSD 14.0-RELEASE-p11 September 8, 2016 FreeBSD 14.0-RELEASE-p11



QUEUE(3) FreeBSD Library Functions Manual QUEUE(3)

SLIST_FOREACH(TYPE *var, SLIST_HEAD *head, SLIST_ENTRY NAME);
SLIST_FOREACH_FROM (TYPE *var, SLIST_HEAD *head, SLIST_ENTRY NAME);

SLIST_FOREACH_FROM _SAFE(TYPE *var, SLIST_HEAD *head, SLIST_ENTRY NAME,
TYPE *temp_var);

SLIST_FOREACH_SAFE(TYPE *var, SLIST_HEAD *head, SLIST_ENTRY NAME,
TYPE *temp_var);

SLIST_HEAD(HEADNAME, TYPE);
SLIST_HEAD_INITIALIZER(SLIST_HEAD head);

SLIST_INIT(SLIST_HEAD *head);

SLIST_INSERT_AFTER(TYPE *listelm, TYPE *elm, SLIST_ENTRY NAME);
SLIST_INSERT_HEAD(SLIST HEAD *head, TYPE *elm, SLIST_ENTRY NAME);
SLIST_NEXT(TYPE *elm, SLIST_ENTRY NAME);
SLIST_REMOVE(SLIST_HEAD *head, TYPE *elm, TYPE, SLIST_ENTRY NAME);
SLIST_REMOVE_AFTER(TYPE *elm, SLIST_ENTRY NAME);
SLIST_REMOVE_HEAD(SLIST_HEAD *head, SLIST_ENTRY NAME);
SLIST_SWAP(SLIST HEAD *headl, SLIST_HEAD *head2, TYPE);
STAILQ_CLASS ENTRY (CLASSTYPE);

STAILQ_CLASS HEAD(HEADNAME, CLASSTYPE);
STAILQ_CONCAT(STAILQ_HEAD *head1, STAILQ HEAD *head?);
STAILQ_EMPTY (STAILQ_HEAD *head);

STAILQ_ENTRY(TYPE);

FreeBSD 14.0-RELEASE-p11 September 8, 2016 FreeBSD 14.0-RELEASE-p11



QUEUE(3) FreeBSD Library Functions Manual QUEUE(3)

STAILQ_FIRST(STAILQ HEAD *head);
STAILQ_FOREACH(TYPE *var, STAILQ_HEAD *head, STAILQ_ENTRY NAME);
STAILQ_FOREACH_FROM (TYPE *var, STAILQ HEAD *head, STAILQ_ENTRY NAME);

STAILQ_FOREACH_FROM_SAFE(TYPE *var, STAILQ_HEAD *head, STAILQ_ENTRY NAME,
TYPE *temp_var);

STAILQ_FOREACH_SAFE(TYPE *var, STAILQ_HEAD *head, STAILQ_ENTRY NAME,
TYPE *temp_var);

STAILQ_HEAD(HEADNAME, TYPE);
STAILQ _HEAD_INITIALIZER(STAILQ HEAD head);
STAILQ_INIT(STAILQ_HEAD *head);

STAILQ_INSERT_AFTER(STAILQ_HEAD *head, TYPE *listelm, TYPE *elm,
STAILQ_ENTRY NAME);

STAILQ_INSERT_HEAD(STAILQ_HEAD *head, TYPE *elm, STAILQ_ENTRY NAME);
STAILQ_INSERT_TAIL(STAILQ HEAD *head, TYPE *elm, STAILQ_ENTRY NAME);
STAILQ_LAST(STAILQ HEAD *head, TYPE *elm, STAILQ_ENTRY NAME);
STAILQ_NEXT(TYPE *elm, STAILQ_ENTRY NAME);

STAILQ_REMOVE(STAILQ HEAD *head, TYPE *elm, TYPE, STAILQ_ENTRY NAME);
STAILQ_REMOVE_AFTER(STAILQ HEAD *head, TYPE *elm, STAILQ_ENTRY NAME);
STAILQ REMOVE_HEAD(STAILQ HEAD *head, STAILQ_ENTRY NAME);
STAILQ_SWAP(STAILQ_HEAD *head1, STAILQ HEAD *head?, TYPE);
LIST_CLASS_ENTRY (CLASSTYPE);

LIST_CLASS HEAD(HEADNAME, CLASSTYPE);

FreeBSD 14.0-RELEASE-p11 September 8, 2016 FreeBSD 14.0-RELEASE-p11



QUEUE(3) FreeBSD Library Functions Manual QUEUE(3)

LIST_CONCAT(LIST_HEAD *headl, LIST_HEAD *head?, TYPE, LIST_ENTRY NAME);
LIST_EMPTY/(LIST_HEAD *head);

LIST_ENTRY(TYPE);

LIST_FIRST(LIST_HEAD *head);

LIST_FOREACH(TYPE *var, LIST_HEAD *head, LIST_ENTRY NAME);
LIST_FOREACH_FROM (TYPE *var, LIST_HEAD *head, LIST_ENTRY NAME);

LIST_FOREACH_FROM_SAFE(TYPE *var, LIST_HEAD *head, LIST_ENTRY NAME,
TYPE *temp_var);

LIST_FOREACH_SAFE(TYPE *var, LIST_HEAD *head, LIST_ENTRY NAME, TYPE *temp_var);
L1ST_HEAD(HEADNAME, TYPE);

LIST_HEAD_INITIALIZER(LIST_HEAD head);

LIST_INIT(LIST_HEAD *head);

LIST_INSERT_AFTER(TYPE *listelm, TYPE *elm, LIST_ENTRY NAME);
LIST_INSERT _BEFORE(TYPE *listelm, TYPE *elm, LIST_ENTRY NAME);
LIST_INSERT_HEAD(LIST_HEAD *head, TYPE *elm, LIST_ENTRY NAME);
LIST_NEXT(TYPE *elm, LIST_ENTRY NAME);

LIST_PREV/(TYPE *elm, LIST_HEAD *head, TYPE, LIST_ENTRY NAME);
LIST_REMOVE(TYPE *elm, LIST_ENTRY NAME);

LIST_SWAP(LIST_HEAD *headl, LIST_HEAD *head?2, TYPE, LIST_ENTRY NAME);
TAILQ_CLASS ENTRY (CLASSTYPE);

TAILQ_CLASS HEAD(HEADNAME, CLASSTYPE);

FreeBSD 14.0-RELEASE-p11 September 8, 2016 FreeBSD 14.0-RELEASE-p11



QUEUE(3) FreeBSD Library Functions Manual QUEUE(3)

TAILQ_CONCAT(TAILQ_HEAD *headl, TAILQ_HEAD *head2, TAILQ_ENTRY NAME);
TAILQ_EMPTY(TAILQ_HEAD *head);

TAILQ_ENTRY (TYPE);

TAILQ_FIRST(TAILQ_HEAD *head);

TAILQ_FOREACH(TYPE *var, TAILQ_HEAD *head, TAILQ_ENTRY NAME);
TAILQ_FOREACH_FROM (TYPE *var, TAILQ_HEAD *head, TAILQ_ENTRY NAME);

TAILQ_FOREACH_FROM_SAFE(TYPE *var, TAILQ_HEAD *head, TAILQ_ENTRY NAME,
TYPE *temp_var);

TAILQ_FOREACH_REVERSE(TYPE *var, TAILQ_HEAD *head, HEADNAME,
TAILQ_ENTRY NAME);

TAILQ_FOREACH_REVERSE_FROM(TYPE *var, TAILQ_HEAD *head, HEADNAME,
TAILQ_ENTRY NAME);

TAILQ FOREACH_REVERSE_FROM _SAFE(TYPE *var, TAILQ_HEAD *head, HEADNAME,
TAILQ_ENTRY NAME, TYPE *temp_var);

TAILQ_FOREACH_REVERSE_SAFE(TYPE *var, TAILQ_HEAD *head, HEADNAME,
TAILQ_ENTRY NAME, TYPE *temp_var);

TAILQ_FOREACH_SAFE(TYPE *var, TAILQ_HEAD *head, TAILQ_ENTRY NAME,
TYPE *temp_var);

TAILQ_HEAD(HEADNAME, TYPE);
TAILQ_HEAD_INITIALIZER(TAILQ HEAD head);
TAILQ_INIT(TAILQ_HEAD *head);

TAILQ_INSERT _AFTER(TAILQ HEAD *head, TYPE *listelm, TYPE *elm,
TAILQ_ENTRY NAME);

TAILQ_INSERT_BEFORE(TYPE *listelm, TYPE *elm, TAILQ_ENTRY NAME);

FreeBSD 14.0-RELEASE-p11 September 8, 2016 FreeBSD 14.0-RELEASE-p11



QUEUE(3) FreeBSD Library Functions Manual QUEUE(3)

TAILQ_INSERT_HEAD(TAILQ HEAD *head, TYPE *elm, TAILQ_ENTRY NAME);

TAILQ_INSERT_TAIL(TAILQ_HEAD *head, TYPE *elm, TAILQ_ENTRY NAME);

TAILQ_LAST(TAILQ_HEAD *head, HEADNAME);

TAILQ_NEXT(TYPE *elm, TAILQ_ENTRY NAME);

TAILQ_PREV/(TYPE *elm, HEADNAME, TAILQ_ENTRY NAME);

TAILQ_REMOVE(TAILQ_HEAD *head, TYPE *elm, TAILQ_ENTRY NAME);

TAILQ_SWAP(TAILQ_HEAD *headl, TAILQ_HEAD *head2, TYPE, TAILQ_ENTRY NAME);
DESCRIPTION

These macros define and operate on four types of data structures which can be used in both C and C++
source code:

1. Lists

2. Singly-linked lists

3.  Singly-linked tail queues
4. Tail queues

All four structures support the following functionality:

1. Insertion of anew entry at the head of thelist.
Insertion of anew entry after any element in the list.
O(2) removal of an entry from the head of thelist.
Forward traversal through the list.

Swapping the contents of two lists.

aprwDd

Singly-linked lists are the simplest of the four data structures and support only the above functionality.
Singly-linked lists are ideal for applications with large datasets and few or no removals, or for
implementing aLIFO queue. Singly-linked lists add the following functionality:

1.  O(n) removal of any entry in thelist.

2. O(n) concatenation of two lists.

Singly-linked tail queues add the following functionality:
1. Entriescan be added at the end of alist.
2. O(n) remova of any entry inthelist.
3. They may be concatenated.
However:
1. Alllistinsertions must specify the head of thelist.

FreeBSD 14.0-RELEASE-p11 September 8, 2016 FreeBSD 14.0-RELEASE-p11



QUEUE(3) FreeBSD Library Functions Manual QUEUE(3)

2. Each head entry requires two pointers rather than one.
3. Codesizeisabout 15% greater and operations run about 20% slower than singly-linked lists.

Singly-linked tail queues are ideal for applications with large datasets and few or no removals, or for
implementing a FIFO queue.

All doubly linked types of data structures (lists and tail queues) additionally allow:
1. Insertion of anew entry before any element in the list.
2. O(1) removal of any entry inthelist.

1. Each element requires two pointers rather than one.
2. Code size and execution time of operations (except for removal) is about twice that of the
singly-linked data-structures.

Linked lists are the simplest of the doubly linked data structures. They add the following functionality
over the above:
1. O(n) concatenation of two lists.
2. They may be traversed backwards.
However:
1. Totraverse backwards, an entry to begin the traversal and the list in which it is contained
must be specified.

Tail queues add the following functionality:
1. Entries can be added at the end of alist.
2. They may be traversed backwards, from tail to head.
3. They may be concatenated.

1.  Alllistinsertions and removals must specify the head of thelist.
2. Each head entry requires two pointers rather than one.
3. Code sizeis about 15% greater and operations run about 20% slower than singly-linked lists.

In the macro definitions, TYPE is the name of a user defined structure. The structure must contain a
field called NAME whichis of type SLIST_ENTRY, STAILQ _ENTRY, LIST_ENTRY, or
TAILQ_ENTRY. Inthe macro definitions, CLASSTYPE isthe name of a user defined class. The class
must contain afield called NAME which is of type SLIST_CLASS ENTRY,

STAILQ_CLASS ENTRY, LIST_CLASS ENTRY, or TAILQ_CLASS ENTRY. Theargument
HEADNAME is the name of a user defined structure that must be declared using the macros
SLIST_HEAD, SLIST_CLASS HEAD, STAILQ HEAD, STAILQ _CLASS HEAD, LIST_HEAD,
LIST_CLASS HEAD, TAILQ HEAD, or TAILQ CLASS HEAD. Seethe examples below for further
explanation of how these macros are used.

FreeBSD 14.0-RELEASE-p11 September 8, 2016 FreeBSD 14.0-RELEASE-p11



QUEUE(3) FreeBSD Library Functions Manual QUEUE(3)

SINGLY-LINKED LISTS
A singly-linked list is headed by a structure defined by the SLIST_HEAD macro. This structure
contains a single pointer to the first element on the list. The elements are singly linked for minimum
space and pointer manipulation overhead at the expense of O(n) removal for arbitrary elements. New
elements can be added to the list after an existing element or at the head of thelist. An SLIST_HEAD
structure is declared as follows:

SLIST_HEAD(HEADNAME, TY PE) head;

where HEADNAME is the name of the structure to be defined, and TYPE is the type of the elementsto
be linked into the list. A pointer to the head of the list can later be declared as:

struct HEADNAME * headp;
(The names head and headp are user selectable.)
Themacro SLIST_HEAD_INITIALIZER evauatesto an initializer for the list head.
Themacro SLIST_CONCAT concatenates the list headed by head2 onto the end of the one headed by
headl removing all entries from the former. Use of this macro should be avoided as it traverses the
entirety of the headl list. A singly-linked tail queue should be used if this macro is needed in high-
usage caode paths or to operate on long lists.
Themacro SLIST_EMPTY evaluatesto true if there are no elementsin the list.
Themacro SLIST_ENTRY declares a structure that connects the elementsin the list.

Themacro SLIST_FIRST returnsthe first element in the list or NULL if the list is empty.

The macro SLIST_FOREACH traverses the list referenced by head in the forward direction, assigning
each element in turn to var.

The macro SLIST_FOREACH_FROM behavesidentically to SLIST_FOREACH when var isNULL,
elseit treats var as a previously found SLIST element and begins the loop at var instead of the first
element in the SLIST referenced by head.

Themacro SLIST_FOREACH_SAFE traverses the list referenced by head in the forward direction,

assigning each element in turn to var. However, unlike SL1ST_FOREACH() hereit is permitted to both
remove var aswell asfreeit from within the loop safely without interfering with the traversal.

FreeBSD 14.0-RELEASE-p11 September 8, 2016 FreeBSD 14.0-RELEASE-p11



QUEUE(3) FreeBSD Library Functions Manual QUEUE(3)

Themacro SLIST_FOREACH_FROM _SAFE behavesidentically to SLIST _FOREACH_SAFE when
var isNULL, elseit treats var as a previously found SLIST element and begins the loop at var instead of
the first element in the SLIST referenced by head.

Themacro SLIST_INIT initializes the list referenced by head.

Themacro SLIST_INSERT_HEAD inserts the new element elm at the head of thelist.

Themacro SLIST_INSERT_AFTER inserts the new element elm after the element listelm.

Themacro SLIST_NEXT returns the next element in the list.

Themacro SLIST_REMOVE_AFTER removes the element after eemfrom thelist. Unlike
S IST_REMOVE, this macro does not traverse the entire list.

The macro SLIST_REMOVE_HEAD removes the element elm from the head of thelist. For optimum
efficiency, elements being removed from the head of the list should explicitly use this macro instead of
the generic SLIST _REMOVE macro.

The macro SLIST_REMOVE removes the element elm from the list. Use of this macro should be
avoided asit traverses the entire list. A doubly-linked list should be used if this macro is needed in high-
usage caode paths or to operate on long lists.

The macro SLIST_SWAP swaps the contents of headl and head2.
SINGLY-LINKED LIST EXAMPLE

SLIST_HEAD(dlisthead, entry) head =
SLIST_HEAD_INITIALIZER(head);

struct slisthead * headp; * Singly-linked List head. */
struct entry {
SLIST_ENTRY (entry) entries; * Singly-linked List. */

} *nl, *n2, *n3, *np;
SLIST_INIT(& head); [* Initidlize thelist. */

nl = malloc(sizeof (struct entry)); /* Insert at the head. */
SLIST_INSERT_HEAD(&head, n1, entries);

FreeBSD 14.0-RELEASE-p11 September 8, 2016 FreeBSD 14.0-RELEASE-p11



QUEUE(3) FreeBSD Library Functions Manual QUEUE(3)

n2 = malloc(sizeof (struct entry)); [* Insert after. */
SLIST_INSERT_AFTER(Nn1, n2, entries);

SLIST REMOVE(&head, n2, entry, entries);/* Deletion. */
free(n2);

n3 = SLIST_FIRST(&head);
SLIST_REMOVE_HEAD(&head, entries); /* Deletion from the head. */
free(n3);
[* Forward traversal. */
SLIST_FOREACH(np, & head, entries)
np-> ...
[* Safe forward traversal. */
SLIST_FOREACH_SAFE(np, &head, entries, np_temp) {
np->do_stuff();

SLIST_REMOVE(&head, np, entry, entries);

free(np);

}

while ('SLIST_EMPTY (& head)) { [* List Deletion. */
nl=SLIST_FIRST(& head);
SLIST_REMOVE_HEAD(&head, entries);
freg(nl);

}

SINGLY-LINKED TAIL QUEUES
A singly-linked tail queue is headed by a structure defined by the STAILQ_HEAD macro. This
structure contains apair of pointers, one to the first element in the tail queue and the other to the last
element in the tail queue. The elements are singly linked for minimum space and pointer manipulation
overhead at the expense of O(n) removal for arbitrary elements. New elements can be added to the tail
gueue after an existing element, at the head of the tail queue, or at the end of the tail queue. A
STAILQ_HEAD structure is declared as follows:

STAILQ_HEAD(HEADNAME, TY PE) head;

where HEADNAME is the name of the structure to be defined, and TY PE is the type of the elementsto
be linked into the tail queue. A pointer to the head of the tail queue can later be declared as:

struct HEADNAME * headp;

FreeBSD 14.0-RELEASE-p11 September 8, 2016 FreeBSD 14.0-RELEASE-p11



QUEUE(3) FreeBSD Library Functions Manual QUEUE(3)

(The names head and headp are user selectable.)
Themacro STAILQ _HEAD INITIALIZER evauatesto aninitiaizer for the tail queue head.

The macro STAILQ_CONCAT concatenates the tail queue headed by head? onto the end of the one
headed by headl removing al entries from the former.

The macro STAILQ_EMPTY evauatesto trueif there are no items on the tail queue.
Themacro STAILQ_ENTRY declares a structure that connects the elements in the tail queue.
The macro STAILQ_FIRST returnsthefirst item on the tail queue or NULL if the tail queue is empty.

The macro STAILQ_FOREACH traverses the tail queue referenced by head in the forward direction,
assigning each element in turn to var.

The macro STAILQ_FOREACH_FROM behavesidenticaly to STAILQ_FOREACH when var is
NULL, elseit treats var as a previously found STAILQ element and beginsthe loop at var instead of the
first element in the STAILQ referenced by head.

The macro STAILQ_FOREACH_SAFE traverses the tail queue referenced by head in the forward
direction, assigning each element in turn to var. However, unlike STAILQ_FOREACHY() hereitis
permitted to both remove var aswell asfree it from within the loop safely without interfering with the
traversal.

The macro STAILQ_FOREACH_FROM _SAFE behavesidentically to STAILQ_FOREACH_SAFE
whenvar isNULL, elseit treats var as a previously found STAILQ element and begins the loop at var
instead of the first element in the STAILQ referenced by head.

Themacro STAILQ_INIT initializes the tail queue referenced by head.

The macro STAILQ_INSERT_HEAD inserts the new element elm at the head of the tail queue.
Themacro STAILQ INSERT_TAIL insertsthe new element elm at the end of the tail queue.

The macro STAILQ _INSERT_AFTER inserts the new element elm after the element listelm.

The macro STAILQ_LAST returnsthe last item on the tail queue. If the tail queueis empty the return
valueisNULL.

FreeBSD 14.0-RELEASE-p11 September 8, 2016 FreeBSD 14.0-RELEASE-p11



QUEUE(3) FreeBSD Library Functions Manual QUEUE(3)

The macro STAILQ_NEXT returns the next item on the tail queue, or NULL thisitem isthe last.

The macro STAILQ_REMOVE_AFTER removes the element after elm from the tail queue. Unlike
STAILQ_REMOVE, this macro does not traverse the entire tail queue.

The macro STAILQ_REMOVE_HEAD removes the element at the head of the tail queue. For optimum
efficiency, elements being removed from the head of the tail queue should use this macro explicitly
rather than the generic STAILQ_REMOVE macro.

The macro STAILQ_REMOVE removes the element elm from the tail queue. Use of this macro should
be avoided as it traversesthe entire list. A doubly-linked tail queue should be used if thismacrois
needed in high-usage code paths or to operate on long tail queues.

The macro STAILQ_SWAP swaps the contents of headl and head?2.
SINGLY-LINKED TAIL QUEUE EXAMPLE

STAILQ_HEAD(stailhead, entry) head =
STAILQ _HEAD_INITIALIZER(head);

struct stailhead * headp; /* Singly-linked tail queue head. */
struct entry {
STAILQ_ENTRY (entry) entries, [* Tail queue. */

} *nl, *n2, *n3, *np;
STAILQ _INIT(&head); /* Initialize the queue. */

n1 = malloc(sizeof (struct entry)); /* Insert at the head. */
STAILQ INSERT HEAD(&head, n1, entries);

nl = malloc(sizeof (struct entry)); [* Insert at the tail. */
STAILQ_INSERT_TAIL(&head, n1, entries);

n2 = malloc(sizeof (struct entry)); [* Insert after. */
STAILQ_INSERT_AFTER(& head, n1, n2, entries);
[* Deletion. */

STAILQ _REMOVE(&head, n2, entry, entries);
free(n2);

/* Deletion from the head. */
n3 = STAILQ_FIRST(&head);

FreeBSD 14.0-RELEASE-p11 September 8, 2016 FreeBSD 14.0-RELEASE-p11



QUEUE(3) FreeBSD Library Functions Manual QUEUE(3)

STAILQ_REMOVE_HEAD(&head, entries);
free(n3);
/* Forward traversal. */
STAILQ_FOREACH(np, & head, entries)
np-> ...
[* Safe forward traversal. */
STAILQ _FOREACH_SAFE(np, &head, entries, np_temp) {
np->do_stuff();

STAILQ _REMOVE(&head, np, entry, entries);
free(np);

/* TailQ Deletion. */
while (ISTAILQ_EMPTY (& head)) {
nl = STAILQ FIRST(&head);
STAILQ REMOVE_HEAD(&head, entries);

freg(nl);

[* Faster TailQ Deletion. */

nl=STAILQ FIRST(&head);
while (n1!=NULL) {

n2 = STAILQ _NEXT(n1, entries);

freg(nl);

nl=n2;
}
STAILQ _INIT(&head);

LISTS
A list is headed by a structure defined by the LIST_HEAD macro. This structure contains asingle
pointer to the first element on the list. The elements are doubly linked so that an arbitrary element can
be removed without traversing the list. New elements can be added to the list after an existing element,
before an existing element, or at the head of thelist. A LIST_HEAD structure is declared as follows:
LIST_HEAD(HEADNAME, TY PE) head;

where HEADNAME is the name of the structure to be defined, and TYPE is the type of the elementsto
be linked into the list. A pointer to the head of thelist can later be declared as:

struct HEADNAME * headp;

FreeBSD 14.0-RELEASE-p11 September 8, 2016 FreeBSD 14.0-RELEASE-p11



QUEUE(3) FreeBSD Library Functions Manual QUEUE(3)

(The names head and headp are user selectable.)

Themacro LIST_HEAD_INITIALIZER evauatesto an initiaizer for the list head.

Themacro LIST_CONCAT concatenates the list headed by head? onto the end of the one headed by
headl1 removing all entries from the former. Use of this macro should be avoided asit traverses the
entirety of the headl list. A tail queue should be used if this macro is needed in high-usage code paths
or to operate on long lists.

Themacro LIST_EMPTY evauatesto trueif there are no elementsin the list.

Themacro LIST_ENTRY declares a structure that connects the elementsin thelist.

Themacro LIST_FIRST returnsthefirst element in the list or NULL if the list is empty.

The macro LIST_FOREACH traversesthe list referenced by head in the forward direction, assigning
each element in turn to var.

Themacro LIST_FOREACH_FROM behavesidentically to LIST_FOREACH when var isNULL, else
it treats var as a previously found LIST element and begins the loop at var instead of the first element in
the LIST referenced by head.

Themacro LIST_FOREACH_SAFE traversesthe list referenced by head in the forward direction,
assigning each element in turn to var. However, unlike LIST_FOREACHY() hereit is permitted to both
remove var aswell asfreeit from within the loop safely without interfering with the traversal.

Themacro LIST_FOREACH_FROM_SAFE behavesidentically to LIST_FOREACH_SAFE when var
iSNULL, elseit treats var as apreviously found LIST element and begins the loop at var instead of the
first element in the LIST referenced by head.

Themacro LIST_INIT initializes the list referenced by head.

Themacro LIST_INSERT_HEAD inserts the new element elm at the head of the list.

Themacro LIST_INSERT_AFTER inserts the new element elm after the element listelm.

Themacro LIST_INSERT_BEFORE inserts the new element elm before the element listelm.

The macro LIST_NEXT returns the next element in thelist, or NULL if thisisthelast.

FreeBSD 14.0-RELEASE-p11 September 8, 2016 FreeBSD 14.0-RELEASE-p11



QUEUE(3) FreeBSD Library Functions Manual QUEUE(3)

Themacro LIST_PREYV returns the previous element in the list, or NULL if thisisthefirst. List head
must contain element elm.

The macro LIST_REMOVE removes the element elm from the list.
The macro LIST_SWAP swaps the contents of head1 and head2.

LIST EXAMPLE
LIST_HEAD(listhead, entry) head =
LIST_HEAD_INITIALIZER(head);
struct listhead * headp; /* List head. */
struct entry {

LIST_ENTRY (entry) entries; /* List. */
} *nl, *n2, *n3, *np, *np_temp;
LIST_INIT(& head); * Initialize the list. */

n1 = malloc(sizeof (struct entry)); /* Insert at the head. */
LIST_INSERT_HEAD(& head, n1, entries);

n2 = malloc(sizeof (struct entry)); [* Insert after. */
LIST_INSERT_AFTER(N1, n2, entries);

n3 = malloc(sizeof (struct entry)); /* Insert before. */
LIST_INSERT_BEFORE(n2, n3, entries);

LIST_REMOVE(Nn2, entries); [* Deletion. */
free(n2);
[* Forward traversal. */
LIST_FOREACH(np, &head, entries)
np-> ...

* Safe forward traversal. */
LIST_FOREACH_SAFE(np, &head, entries, np_temp) {
np->do_stuff();

LIST_REMOVE(np, entries);
free(np);

FreeBSD 14.0-RELEASE-p11 September 8, 2016 FreeBSD 14.0-RELEASE-p11



QUEUE(3) FreeBSD Library Functions Manual QUEUE(3)

}

while ('LIST_EMPTY (& head)) { [* List Deletion. */
nl=LIST_FIRST(&head);
LIST_REMOVE(n1, entries);
freg(nl);

}

nl=LIST_FIRST(&head); /* Faster List Deletion. */

while (N1 !'=NULL){
n2 = LIST_NEXT(n1, entries);
free(nl);
nl=n2;

}
LIST_INIT(&head);

TAIL QUEUES
A tail queue is headed by a structure defined by the TAILQ_HEAD macro. This structure contains a
pair of pointers, one to the first element in the tail queue and the other to the last element in the tail
gueue. The elements are doubly linked so that an arbitrary element can be removed without traversing
the tail queue. New elements can be added to the tail queue after an existing element, before an existing
element, at the head of the tail queue, or at the end of thetail queue. A TAILQ_HEAD structureis
declared asfollows:

TAILQ HEAD(HEADNAME, TY PE) head;

where HEADNAME is the name of the structure to be defined, and TY PE is the type of the elements to
be linked into the tail queue. A pointer to the head of the tail queue can later be declared as.

struct HEADNAME * headp;
(The names head and headp are user selectable.)
Themacro TAILQ _HEAD_INITIALIZER evaluatesto aninitializer for the tail queue head.

The macro TAILQ_CONCAT concatenates the tail queue headed by head2 onto the end of the one
headed by headl removing all entries from the former.

Themacro TAILQ_EMPTY evaluatesto trueif there are no items on the tail queue.

FreeBSD 14.0-RELEASE-p11 September 8, 2016 FreeBSD 14.0-RELEASE-p11



QUEUE(3) FreeBSD Library Functions Manual QUEUE(3)

Themacro TAILQ_ENTRY declares a structure that connects the elements in the tail queue.
Themacro TAILQ_FIRST returnsthe first item on the tail queue or NULL if the tail queue is empty.

The macro TAILQ_FOREACH traverses the tail queue referenced by head in the forward direction,
assigning each element in turn to var. var isset to NULL if the loop completes normally, or if there
were no elements.

Themacro TAILQ_FOREACH_FROM behavesidentically to TAILQ_FOREACH when var isNULL,
elseit treats var as a previously found TAILQ element and begins the loop at var instead of the first
element in the TAILQ referenced by head.

The macro TAILQ_FOREACH_REVERSE traversesthe tail queue referenced by head in the reverse
direction, assigning each element in turn to var.

The macro TAILQ_FOREACH_REVERSE_FROM behaves identically to
TAILQ _FOREACH_REVERSE whenvar isNULL, elseit treats var as aprevioudy found TAILQ
element and begins the reverse loop at var instead of the last element in the TAILQ referenced by head.

The macros TAILQ_FOREACH_SAFE and TAILQ_FOREACH_REVERSE_SAFE traverse the list
referenced by head in the forward or reverse direction respectively, assigning each element in turn to

var. However, unlike their unsafe counterparts, TAILQ_FOREACH and
TAILQ_FOREACH_REVERSE permit to both remove var as well as free it from within the loop safely
without interfering with the traversal.

The macro TAILQ_FOREACH_FROM _SAFE behavesidentically to TAILQ_FOREACH_SAFE when
var isNULL, elseit treats var as apreviously found TAILQ element and begins the loop at var instead

of thefirst element in the TAILQ referenced by head.

The macro TAILQ_FOREACH_REVERSE_FROM_SAFE behavesidentically to
TAILQ_FOREACH_REVERSE_SAFE whenvar isNULL, elseit treats var as apreviously found
TAILQ element and begins the reverse loop at var instead of the last element in the TAILQ referenced

by head.

Themacro TAILQ _INIT initializes the tail queue referenced by head.

Themacro TAILQ_INSERT_HEAD inserts the new element elm at the head of the tail queue.

Themacro TAILQ _INSERT_TAIL insertsthe new element elm at the end of the tail queue.

FreeBSD 14.0-RELEASE-p11 September 8, 2016 FreeBSD 14.0-RELEASE-p11



QUEUE(3) FreeBSD Library Functions Manual QUEUE(3)

Themacro TAILQ INSERT_AFTER inserts the new element elm after the element listelm.
The macro TAILQ_INSERT_BEFORE inserts the new element elm before the element listelm.

Themacro TAILQ_LAST returnsthelast item on thetail queue. If thetail queue is empty the return
valueisNULL.

The macro TAILQ_NEXT returnsthe next item on the tail queue, or NULL if thisitem isthe last.
The macro TAILQ_PREYV returns the previous item on the tail queue, or NULL if thisitem isthe first.
The macro TAILQ_REMOVE removes the element elm from the tail queue.
The macro TAILQ_SWAP swaps the contents of headl and head?.

TAIL QUEUE EXAMPLE

TAILQ_HEAD(tailhead, entry) head =
TAILQ_HEAD_INITIALIZER(head);

struct tailhead * headp; /* Tail queue head. */
struct entry {
TAILQ_ENTRY (entry) entries, [* Tail queue. */

} *nl, *n2, *n3, *np;
TAILQ_INIT(&head); /* Initiaize the queue. */

n1 = malloc(sizeof (struct entry)); /* Insert at the head. */
TAILQ_INSERT HEAD(& head, ni, entries);

nl = malloc(sizeof (struct entry)); [* Insert at the tail. */
TAILQ_INSERT_TAIL(&head, n1, entries);

n2 = malloc(sizeof (struct entry)); [* Insert after. */
TAILQ_INSERT_AFTER(&head, n1, n2, entries);

n3 = malloc(sizeof (struct entry)); I* Insert before. */
TAILQ_INSERT_BEFORE(n2, n3, entries);

TAILQ_REMOVE(&head, n2, entries);/* Deletion. */

FreeBSD 14.0-RELEASE-p11 September 8, 2016 FreeBSD 14.0-RELEASE-p11



QUEUE(3) FreeBSD Library Functions Manual QUEUE(3)

free(n2);
/* Forward traversal. */
TAILQ_FOREACH(np, & head, entries)
np-> ...
[* Safe forward traversal. */
TAILQ_FOREACH_SAFE(np, & head, entries, np_temp) {
np->do_stuff();

TAILQ_REMOVE(&head, np, entries);
free(np);

/* Reverse traversal. */
TAILQ_FOREACH_REVERSE(np, & head, tailhead, entries)
np-> ...
[* TailQ Deletion. */
while ('TAILQ_EMPTY (& head)) {
nl=TAILQ FIRST(&head);
TAILQ_REMOVE(&head, nl, entries);
free(nl);

[* Faster TailQ Deletion. */

nl=TAILQ FIRST(&head);
while (n1!=NULL) {

n2 = TAILQ _NEXT(n1, entries);

freg(nl);

nl=n2;
}
TAILQ_INIT(&head);

DIAGNOSTICS
When debugging queue(3), it can be useful to trace queue changes. To enable tracing, define the macro
QUEUE_MACRO_DEBUG_TRACE at compiletime.

It can also be useful to trash pointers that have been unlinked from a queue, to detect use after removal.
To enable pointer trashing, define the macro QUEUE_MACRO DEBUG_TRASH at compile time.
Themacro QMD_|IS TRASHED(void *ptr) returnstrue if ptr has been trashed by the
QUEUE_MACRO_DEBUG_TRASH option.

In the kernel (with INVARIANTS enabled), the SLIST_REMOVE_PREVPTR() macro isavailable to
aid debugging:

FreeBSD 14.0-RELEASE-p11 September 8, 2016 FreeBSD 14.0-RELEASE-p11



QUEUE(3) FreeBSD Library Functions Manual QUEUE(3)

SLIST_REMOVE_PREVPTR(TYPE **prev, TYPE *elm, SLIST_ENTRY NAME)

Removes elm, which must directly follow the element whose & SLIST _NEXT() is prev, from
the SLIST. This macro validates that eemfollows previn INVARIANTS mode.

SEE ALSO
arb(3), tree(3)

HISTORY
The queue functions first appeared in 4.4BSD.

FreeBSD 14.0-RELEASE-p11 September 8, 2016 FreeBSD 14.0-RELEASE-p11



