
NAME
re_format - POSIX 1003.2 regular expressions

DESCRIPTION
Regular expressions ("REs"), as defined in IEEE Std 1003.2 ("POSIX.2"), come in two forms: modern

REs (roughly those of egrep(1); 1003.2 calls these "extended" REs) and obsolete REs (roughly those of

ed(1); 1003.2 "basic" REs). Obsolete REs mostly exist for backward compatibility in some old

programs; they will be discussed at the end. IEEE Std 1003.2 ("POSIX.2") leaves some aspects of RE

syntax and semantics open; ‘<**>’ marks decisions on these aspects that may not be fully portable to

other IEEE Std 1003.2 ("POSIX.2") implementations.

A (modern) RE is one<**> or more non-empty<**> branches, separated by ‘|’. It matches anything that

matches one of the branches.

A branch is one<**> or more pieces, concatenated. It matches a match for the first, followed by a match

for the second, etc.

A piece is an atom possibly followed by a single<**> ‘*’, ‘+’, ‘?’, or bound. An atom followed by ‘*’

matches a sequence of 0 or more matches of the atom. An atom followed by ‘+’ matches a sequence of

1 or more matches of the atom. An atom followed by ‘?’ matches a sequence of 0 or 1 matches of the

atom.

A bound is ‘{’ followed by an unsigned decimal integer, possibly followed by ‘,’ possibly followed by

another unsigned decimal integer, always followed by ‘}’. The integers must lie between 0 and

RE_DUP_MAX (255<**>) inclusive, and if there are two of them, the first may not exceed the second.

An atom followed by a bound containing one integer i and no comma matches a sequence of exactly i

matches of the atom. An atom followed by a bound containing one integer i and a comma matches a

sequence of i or more matches of the atom. An atom followed by a bound containing two integers i and

j matches a sequence of i through j (inclusive) matches of the atom.

An atom is a regular expression enclosed in ‘()’ (matching a match for the regular expression), an empty

set of ‘()’ (matching the null string)<**>, a bracket expression (see below), ‘.’ (matching any single

character), ‘^’ (matching the null string at the beginning of a line), ‘$’ (matching the null string at the

end of a line), a ‘\’ followed by one of the characters ‘^.[$()|*+?{\’ (matching that character taken as an

ordinary character), a ‘\’ followed by any other character<**> (matching that character taken as an

ordinary character, as if the ‘\’ had not been present<**>), or a single character with no other

significance (matching that character). A ‘{’ followed by a character other than a digit is an ordinary

character, not the beginning of a bound<**>. It is illegal to end an RE with ‘\’.

A bracket expression is a list of characters enclosed in ‘[]’. It normally matches any single character

RE_FORMAT(7) FreeBSD Miscellaneous Information Manual RE_FORMAT(7)

FreeBSD 14.0-RELEASE-p11 June 30, 2014 FreeBSD 14.0-RELEASE-p11

from the list (but see below). If the list begins with ‘^’, it matches any single character (but see below)

not from the rest of the list. If two characters in the list are separated by ‘-’, this is shorthand for the full

range of characters between those two (inclusive) in the collating sequence, e.g. ‘[0-9]’ in ASCII

matches any decimal digit. It is illegal<**> for two ranges to share an endpoint, e.g. ‘a-c-e’. Ranges are

very collating-sequence-dependent, and portable programs should avoid relying on them.

To include a literal ‘]’ in the list, make it the first character (following a possible ‘^’). To include a

literal ‘-’, make it the first or last character, or the second endpoint of a range. To use a literal ‘-’ as the

first endpoint of a range, enclose it in ‘[.’ and ‘.]’ to make it a collating element (see below). With the

exception of these and some combinations using ‘[’ (see next paragraphs), all other special characters,

including ‘\’, lose their special significance within a bracket expression.

Within a bracket expression, a collating element (a character, a multi-character sequence that collates as

if it were a single character, or a collating-sequence name for either) enclosed in ‘[.’ and ‘.]’ stands for

the sequence of characters of that collating element. The sequence is a single element of the bracket

expression’s list. A bracket expression containing a multi-character collating element can thus match

more than one character, e.g. if the collating sequence includes a ‘ch’ collating element, then the RE

‘[[.ch.]]*c’ matches the first five characters of ‘chchcc’.

Within a bracket expression, a collating element enclosed in ‘[=’ and ‘=]’ is an equivalence class,

standing for the sequences of characters of all collating elements equivalent to that one, including itself.

(If there are no other equivalent collating elements, the treatment is as if the enclosing delimiters were

‘[.’ and ‘.]’.) For example, if ‘x’ and ‘y’ are the members of an equivalence class, then ‘[[=x=]]’,

‘[[=y=]]’, and ‘[xy]’ are all synonymous. An equivalence class may not<**> be an endpoint of a range.

Within a bracket expression, the name of a character class enclosed in ‘[:’ and ‘:]’ stands for the list of

all characters belonging to that class. Standard character class names are:

alnum digit punct

alpha graph space

blank lower upper

cntrl print xdigit

These stand for the character classes defined in ctype(3). A locale may provide others. A character

class may not be used as an endpoint of a range.

A bracketed expression like ‘[[:class:]]’ can be used to match a single character that belongs to a

character class. The reverse, matching any character that does not belong to a specific class, the

negation operator of bracket expressions may be used: ‘[^[:class:]]’.

RE_FORMAT(7) FreeBSD Miscellaneous Information Manual RE_FORMAT(7)

FreeBSD 14.0-RELEASE-p11 June 30, 2014 FreeBSD 14.0-RELEASE-p11

There are two special cases<**> of bracket expressions: the bracket expressions ‘[[:<:]]’ and ‘[[:>:]]’

match the null string at the beginning and end of a word respectively. A word is defined as a sequence

of word characters which is neither preceded nor followed by word characters. A word character is an

alnum character (as defined by ctype(3)) or an underscore. This is an extension, compatible with but not

specified by IEEE Std 1003.2 ("POSIX.2"), and should be used with caution in software intended to be

portable to other systems. The additional word delimiters ‘\<’ and ‘\>’ are provided to ease

compatibility with traditional SVR4 systems but are not portable and should be avoided.

In the event that an RE could match more than one substring of a given string, the RE matches the one

starting earliest in the string. If the RE could match more than one substring starting at that point, it

matches the longest. Subexpressions also match the longest possible substrings, subject to the constraint

that the whole match be as long as possible, with subexpressions starting earlier in the RE taking priority

over ones starting later. Note that higher-level subexpressions thus take priority over their lower-level

component subexpressions.

Match lengths are measured in characters, not collating elements. A null string is considered longer than

no match at all. For example, ‘bb*’ matches the three middle characters of ‘abbbc’,

‘(wee|week)(knights|nights)’ matches all ten characters of ‘weeknights’, when ‘(.*).*’ is matched against

‘abc’ the parenthesized subexpression matches all three characters, and when ‘(a*)*’ is matched against

‘bc’ both the whole RE and the parenthesized subexpression match the null string.

If case-independent matching is specified, the effect is much as if all case distinctions had vanished from

the alphabet. When an alphabetic that exists in multiple cases appears as an ordinary character outside a

bracket expression, it is effectively transformed into a bracket expression containing both cases, e.g. ‘x’

becomes ‘[xX]’. When it appears inside a bracket expression, all case counterparts of it are added to the

bracket expression, so that (e.g.) ‘[x]’ becomes ‘[xX]’ and ‘[^x]’ becomes ‘[^xX]’.

No particular limit is imposed on the length of REs<**>. Programs intended to be portable should not

employ REs longer than 256 bytes, as an implementation can refuse to accept such REs and remain

POSIX-compliant.

Obsolete ("basic") regular expressions differ in several respects. ‘|’ is an ordinary character and there is

no equivalent for its functionality. ‘+’ and ‘?’ are ordinary characters, and their functionality can be

expressed using bounds (‘{1,}’ or ‘{0,1}’ respectively). Also note that ‘x+’ in modern REs is equivalent

to ‘xx*’. The delimiters for bounds are ‘\{’ and ‘\}’, with ‘{’ and ‘}’ by themselves ordinary characters.

The parentheses for nested subexpressions are ‘\(’ and ‘\)’, with ‘(’ and ‘)’ by themselves ordinary

characters. ‘^’ is an ordinary character except at the beginning of the RE or<**> the beginning of a

parenthesized subexpression, ‘$’ is an ordinary character except at the end of the RE or<**> the end of a

parenthesized subexpression, and ‘*’ is an ordinary character if it appears at the beginning of the RE or

the beginning of a parenthesized subexpression (after a possible leading ‘^’). Finally, there is one new

RE_FORMAT(7) FreeBSD Miscellaneous Information Manual RE_FORMAT(7)

FreeBSD 14.0-RELEASE-p11 June 30, 2014 FreeBSD 14.0-RELEASE-p11

type of atom, a back reference: ‘\’ followed by a non-zero decimal digit d matches the same sequence of

characters matched by the dth parenthesized subexpression (numbering subexpressions by the positions

of their opening parentheses, left to right), so that (e.g.) ‘\([bc]\)\1’ matches ‘bb’ or ‘cc’ but not ‘bc’.

SEE ALSO
regex(3)

Regular Expression Notation, IEEE Std, 1003.2, section 2.8.

BUGS
Having two kinds of REs is a botch.

The current IEEE Std 1003.2 ("POSIX.2") spec says that ‘)’ is an ordinary character in the absence of an

unmatched ‘(’; this was an unintentional result of a wording error, and change is likely. Avoid relying

on it.

Back references are a dreadful botch, posing major problems for efficient implementations. They are

also somewhat vaguely defined (does ‘a\(\(b\)*\2\)*d’ match ‘abbbd’?). Avoid using them.

IEEE Std 1003.2 ("POSIX.2") specification of case-independent matching is vague. The "one case

implies all cases" definition given above is current consensus among implementors as to the right

interpretation.

The syntax for word boundaries is incredibly ugly.

RE_FORMAT(7) FreeBSD Miscellaneous Information Manual RE_FORMAT(7)

FreeBSD 14.0-RELEASE-p11 June 30, 2014 FreeBSD 14.0-RELEASE-p11

