
NAME
choosethread, procrunnable, remrunqueue, setrunqueue - manage the queue of runnable processes

SYNOPSIS
#include <sys/param.h>
#include <sys/proc.h>

extern struct rq itqueues[];

extern struct rq rtqueues[];

extern struct rq queues[];

extern struct rq idqueues[];

struct thread *

choosethread(void);

int

procrunnable(void);

void

remrunqueue(struct thread *td);

void

setrunqueue(struct thread *td);

DESCRIPTION
The run queue consists of four priority queues: itqueues for interrupt threads, rtqueues for realtime

priority processes, queues for time sharing processes, and idqueues for idle priority processes. Each

priority queue consists of an array of NQS queue header structures. Each queue header identifies a list

of runnable processes of equal priority. Each queue also has a single word that contains a bit mask

identifying non-empty queues to assist in selecting a process quickly. These are named itqueuebits,

rtqueuebits, queuebits, and idqueuebits. The run queues are protected by the sched_lock mutex.

procrunnable() returns zero if there are no runnable processes other than the idle process. If there is at

least one runnable process other than the idle process, it will return a non-zero value. Note that the

sched_lock mutex does not need to be held when this function is called. There is a small race window

where one CPU may place a process on the run queue when there are currently no other runnable

processes while another CPU is calling this function. In that case the second CPU will simply travel

through the idle loop one additional time before noticing that there is a runnable process. This works

because idle CPUs are not halted in SMP systems. If idle CPUs are halted in SMP systems, then this

race condition might have more serious repercussions in the losing case, and procrunnable() may have to

RUNQUEUE(9) FreeBSD Kernel Developer’s Manual RUNQUEUE(9)

FreeBSD 14.0-RELEASE-p11 August 15, 2010 FreeBSD 14.0-RELEASE-p11



require that the sched_lock mutex be acquired.

choosethread() returns the highest priority runnable thread. If there are no runnable threads, then the

idle thread is returned. This function is called by cpu_switch() and cpu_throw() to determine which

thread to switch to. choosethread() must be called with the sched_lock mutex held.

setrunqueue() adds the thread td to the tail of the appropriate queue in the proper priority queue. The

thread must be runnable, i.e. p_stat must be set to SRUN. This function must be called with the

sched_lock mutex held.

remrunqueue() removes thread td from its run queue. If td is not on a run queue, then the kernel will

panic(9). This function must be called with the sched_lock mutex held.

SEE ALSO
cpu_switch(9), scheduler(9), sleepqueue(9)

RUNQUEUE(9) FreeBSD Kernel Developer’s Manual RUNQUEUE(9)

FreeBSD 14.0-RELEASE-p11 August 15, 2010 FreeBSD 14.0-RELEASE-p11


