
NAME
smr - safe memory reclamation for lock-free data structures

SYNOPSIS
#include <sys/smr.h>

smr_seq_t

smr_advance(smr_t smr);

smr_t

smr_create(const char *name);

void

smr_destroy(smr_t smr);

void

smr_enter(smr_t smr);

void

smr_exit(smr_t smr);

bool

smr_poll(smr_t smr, smr_seq_t goal, bool wait);

void

smr_synchronize(smr_t smr);

void

smr_wait(smr_t smr, smr_seq_t goal);

DESCRIPTION
Safe Memory Reclamation (SMR) is a facility which enables the implementation of memory-safe lock-

free data structures. In typical usage, read accesses to an SMR-protected data structure, such as a hash

table or tree, are performed in a "read section" consisting of code bracketed by smr_enter() and

smr_exit() calls, while mutations of the data structure are serialized by a traditional mutex such as

mutex(9). In contrast with reader-writer locks such as rwlock(9), rmlock(9), and sx(9), SMR allows

readers and writers to access the data structure concurrently. Readers can always enter a read section

immediately (smr_enter() never blocks), so mutations do not introduce read latency. Furthermore,

smr_enter() and smr_exit() operate only on per-CPU data and thus avoid some of the performance

problems inherent in the implementation of traditional reader-writer mutexes. SMR can therefore be a

SMR(9) FreeBSD Kernel Developer’s Manual SMR(9)

FreeBSD 14.0-RELEASE-p11 January 17, 2023 FreeBSD 14.0-RELEASE-p11



useful building block for data structures which are accessed frequently but are only rarely modified.

Note that any SMR-protected data structure must be implemented carefully such that operations behave

correctly in the absence of mutual exclusion between readers and writers. The data structure must be

designed to be lock-free; SMR merely facilitates the implementation, for example by making it safe to

follow dangling pointers and by helping avoid the ABA problem.

When shared accesses to and mutations of a data structure can proceed concurrently, writers must take

care to ensure that any items removed from the structure are not freed and recycled while readers are

accessing them in parallel. This requirement results in a two-phase approach to the removal of items:

first, the item is unlinked such that all pointers to the item are removed from the structure, preventing

any new readers from observing the item. Then, the writer waits until some mechanism guarantees that

no existing readers are still accessing the item. At that point the memory for that item can be freed and

reused safely. SMR provides this mechanism: readers may access a lock-free data structure in between

calls to the smr_enter() and smr_exit() functions, which together create a read section, and the

smr_advance(), smr_poll(), smr_wait(), and smr_synchronize() functions can be used to wait for threads

in read sections to finish. All of these functions operate on a smr_t state block which holds both per-

CPU and global state. Readers load global state and modify per-CPU state, while writers must scan all

per-CPU states to detect active readers. SMR is designed to amortize this cost by batching to give

acceptable performance in write-heavy workloads.

Readers
Threads enter a read section by calling smr_enter(). Read sections should be short, and many operations

are not permitted while in a read section. Specifically, context switching is disabled, and thus readers

may not acquire blocking mutexes such as mutex(9). Another consequence of this is that the thread is

pinned to the current CPU for the duration of the read section. Furthermore, read sections may not be

nested: it is incorrect to call smr_enter() with a given smr_t state block when already in a read section

for that state block.

UMA Integration
To simplify the integration of SMR into consumers, the uma(9) kernel memory allocator provides some

SMR-specified facilities. This eliminates a good deal of complexity from the implementation of

consumers and automatically batches write operations.

In typical usage, a UMA zone (created with the UMA_ZONE_SMR flag or initialized with the

uma_zone_set_smr() function) is coupled with a smr_t state block. To insert an item into an SMR-

protected data structure, memory is allocated from the zone using the uma_zalloc_smr() function.

Insertions and removals are serialized using traditional mutual exclusion and items are freed using the

uma_zfree_smr() function. Read-only lookup operations are performed in SMR read sections.

uma_zfree_smr() waits for all active readers which may be accessing the freed item to finish their read

SMR(9) FreeBSD Kernel Developer’s Manual SMR(9)

FreeBSD 14.0-RELEASE-p11 January 17, 2023 FreeBSD 14.0-RELEASE-p11



sections before recycling that item’s memory.

If the zone has an associated per-item destructor, it will be invoked at some point when no readers can

be accessing a given item. The destructor can be used to release additional resources associated with the

item. Note however that there is no guarantee that the destructor will be invoked in a bounded time

period.

Writers
Consumers are expected to use SMR in conjunction with UMA and thus need only make use of the

smr_enter() and smr_exit() functions, and the SMR helper macros defined in sys/smr_types.h. However,

an introduction to the write-side interface of SMR can be useful.

Internally, SMR maintains a global ‘write sequence’ number. When entering a read section, smr_enter()

loads a copy of the write sequence and stores it in per-CPU memory, hence ‘observing’ that value. To

exit a read section, this per-CPU memory is overwritten with an invalid value, making the CPU inactive.

Writers perform two operations: advancing the write sequence number, and polling all CPUs to see

whether active readers have observed a given sequence number. These operations are performed by

smr_advance() and smr_poll(), respectively, which do not require serialization between multiple writers.

After a writer unlinks an item from a data structure, it increments the write sequence number and tags

the item with the new value returned by smr_advance(). Once all CPUs have observed the new value,

the writer can use smr_poll() to deduce that no active readers have access to the unlinked item, and thus

the item is safe to recycle. Because this pair of operations is relatively expensive, it is generally a good

idea to amortize this cost by accumulating a collection of multiple unlinked items and tagging the entire

batch with a target write sequence number.

smr_poll() is a non-blocking operation and returns true only if all active readers are guaranteed to have

observed the target sequence number value. smr_wait() is a variant of smr_poll() which waits until all

CPUs have observed the target sequence number value. smr_synchronize() combines smr_advance()

with smr_wait() to wait for all CPUs to observe a new write sequence number. This is an expensive

operation and should only be used if polling cannot be deferred in some way.

Memory Ordering
The smr_enter() function has acquire semantics, and the smr_exit() function has release semantics. The

smr_advance(), smr_poll(), smr_wait(), and smr_synchronize() functions should not be assumed to have

any guarantees with respect to memory ordering. In practice, some of these functions have stronger

ordering semantics than is stated here, but this is specific to the implementation and should not be relied

upon. See atomic(9) for more details.

NOTES

SMR(9) FreeBSD Kernel Developer’s Manual SMR(9)

FreeBSD 14.0-RELEASE-p11 January 17, 2023 FreeBSD 14.0-RELEASE-p11



Outside of FreeBSD the acronym SMR typically refers to a family of algorithms which enable memory-

safe read-only access to a data structure concurrent with modifications to that data structure. Here, SMR

refers to a particular algorithm belonging to this family, as well as its implementation in FreeBSD. See

sys/sys/smr.h and sys/kern/subr_smr.c in the FreeBSD source tree for further details on the algorithm

and the context.

The acronym SMR is also used to mean "shingled magnetic recording", a technology used to store data

on hard disk drives which requires operating system support. These two uses of the acronym are

unrelated.

SEE ALSO
atomic(9), locking(9), uma(9)

AUTHORS
The SMR algorithm and its implementation were provided by Jeff Roberson <jeff@FreeBSD.org>.

This manual page was written by

Mark Johnston <markj@FreeBSD.org>.

SMR(9) FreeBSD Kernel Developer’s Manual SMR(9)

FreeBSD 14.0-RELEASE-p11 January 17, 2023 FreeBSD 14.0-RELEASE-p11


