
NAME
mibII, mibif_notify_f, mib_netsock, mib_if_set_dyn, mib_refresh_iflist, mib_find_if, mib_find_if_sys,

mib_find_if_name, mib_first_if, mib_next_if, mib_register_newif, mib_unregister_newif,
mib_fetch_ifmib, mib_if_admin, mib_find_ifa, mib_first_ififa, mib_next_ififa, mib_ifstack_create,

mib_ifstack_delete, mib_find_rcvaddr, mib_rcvaddr_create, mib_rcvaddr_delete, mibif_notify,

mibif_unnotify - mib-2 module for bsnmpd.

LIBRARY
(begemotSnmpdModulePath."mibII" = /usr/lib/snmp_mibII.so)

SYNOPSIS
#include <net/if.h>
#include <net/if_mib.h>
#include <bsnmp/snmpmod.h>
#include <bsnmp/snmp_mibII.h>

typedef void

(*mibif_notify_f)(struct mibif *ifp, enum mibif_notify event, void *uarg);

extern int mib_netsock;

void

mib_if_set_dyn(const char *ifname);

void

mib_refresh_iflist(void);

struct mibif *

mib_find_if(u_int ifindex);

struct mibif *

mib_find_if_sys(u_int sysindex);

struct mibif *

mib_find_if_name(const char *ifname);

struct mibif *

mib_first_if(void);

struct mibif *

SNMP_MIBII(3) FreeBSD Library Functions Manual SNMP_MIBII(3)

FreeBSD 14.0-RELEASE-p11 January 4, 2017 FreeBSD 14.0-RELEASE-p11



mib_next_if(const struct mibif *ifp);

int

mib_register_newif(int (*func)(struct mibif *), const struct lmodule *mod);

void

mib_unregister_newif(const struct lmodule *mod);

int

mib_fetch_ifmib(struct mibif *ifp);

int

mib_if_admin(struct mibif *ifp, int up);

struct mibifa *

mib_find_ifa(struct in_addr ipa);

struct mibifa *

mib_first_ififa(const struct mibif *ifp);

struct mibifa *

mib_next_ififa(struct mibifa *ifa);

int

mib_ifstack_create(const struct mibif *lower, const struct mibif *upper);

void

mib_ifstack_delete(const struct mibif *lower, const struct mibif *upper);

struct mibrcvaddr *

mib_find_rcvaddr(u_int ifindex, const u_char *addr, size_t addrlen);

struct mibrcvaddr *

mib_rcvaddr_create(struct mibif *ifp, const u_char *addr, size_t addrlen);

void

mib_rcvaddr_delete(struct mibrcvaddr *addr);

void *

mibif_notify(struct mibif *ifp, const struct lmodule *mod, mibif_notify_f func, void *uarg);

SNMP_MIBII(3) FreeBSD Library Functions Manual SNMP_MIBII(3)

FreeBSD 14.0-RELEASE-p11 January 4, 2017 FreeBSD 14.0-RELEASE-p11



void

mibif_unnotify(void *reg);

DESCRIPTION
The snmp_mibII module implements parts of the internet standard MIB-2. Most of the relevant MIBs

are implemented. Some of the tables are restricted to be read-only instead of read-write. The exact

current implementation can be found in /usr/share/snmp/defs/mibII_tree.def. The module also exports a

number of functions and global variables for use by other modules, that need to handle network

interfaces. This man page describes these functions.

DIRECT NETWORK ACCESS
The mibII module opens a socket that is used to execute all network related ioctl(2) functions. This

socket is globally available under the name mib_netsock.

NETWORK INTERFACES
The mibII module handles a list of all currently existing network interfaces. It allows other modules to

handle their own interface lists with special information by providing a mechanism to register to events

that change the interface list (see below). The basic data structure is the interface structure:

struct mibif {

TAILQ_ENTRY(mibif) link;

u_int flags;

u_int index; /* logical ifindex */

u_int sysindex;

char name[IFNAMSIZ];

char descr[256];

struct ifmibdata mib;

uint64_t mibtick;

void *specmib;

size_t specmiblen;

u_char *physaddr;

u_int physaddrlen;

int has_connector;

int trap_enable;

uint64_t counter_disc;

mibif_notify_f xnotify;

void *xnotify_data;

const struct lmodule *xnotify_mod;

struct asn_oid spec_oid;

};

SNMP_MIBII(3) FreeBSD Library Functions Manual SNMP_MIBII(3)

FreeBSD 14.0-RELEASE-p11 January 4, 2017 FreeBSD 14.0-RELEASE-p11



The mibII module tries to implement the semantic if ifIndex as described in RFC-2863. This RFC

states, that an interface indexes may not be reused. That means, for example, if tun is a synthetic

interface type and the system creates the interface tun0, destroys this interfaces and again creates a tun 0,

then these interfaces must have different interface indexes, because in fact they are different interfaces.

If, on the other hand, there is a hardware interface xl0 and this interface disappears, because its driver is

unloaded and appears again, because the driver is loaded again, the interface index must stay the same.

mibII implements this by differentiating between real and synthetic (dynamic) interfaces. An interface

type can be declared dynamic by calling the function mib_if_set_dyn() with the name if the interface

type (for example "tun )." For real interfaces, the module keeps the mapping between the interface name

and its ifIndex in a special list, if the interface is unloaded. For dynamic interfaces a new ifIndex is

generated each time the interface comes into existence. This means, that the interface index as seen by

SNMP is not the same index as used by the system. The SNMP ifIndex is held in field index, the

system’s interface index is sysindex.

A call to mib_refresh_iflist causes the entire interface list to be re-created.

The interface list can be traversed with the functions mib_first_if() and mib_next_if(). Be sure not to

change the interface list while traversing the list with these two calls.

There are three functions to find an interface by name or index. mib_find_if() finds an interface by

searching for an SNMP ifIndex, mib_find_if_sys() finds an interface by searching for a system interface

index and mib_find_if_name() finds an interface by looking for an interface name. Each of the function

returns NULL if the interface cannot be found.

The function mib_fetch_ifmib() causes the interface MIB to be refreshed from the kernel.

The function mib_if_admin() can be used to change the interface administrative state to up (argument is

1) or down (argument is 0).

INTERFACE EVENTS
A module can register itself to receive a notification when a new entry is created in the interface list.

This is done by calling mib_register_newif(). A module can register only one function, a second call to

mib_register_newif() causes the registration to be overwritten. The registration can be removed with a

call to mib_unregister_newif(). It is unregistered automatically, when the registering module is

unloaded.

A module can also register to events on a specific interface. This is done by calling mibif_notify(). This

causes the given callback func to be called with the interface pointer, a notification code and the user

argument uarg when any of the following events occur:

SNMP_MIBII(3) FreeBSD Library Functions Manual SNMP_MIBII(3)

FreeBSD 14.0-RELEASE-p11 January 4, 2017 FreeBSD 14.0-RELEASE-p11



MIBIF_NOTIFY_DESTROY

The interface is destroyed.

This mechanism can be used to implement interface type specific MIB parts in other modules. The

registration can be removed with mib_unnotify() which the return value from mib_notify. Any

notification registration is removed automatically when the interface is destroyed or the registering

module is unloaded. Note that only one module can register to any given interface.

INTERFACE ADDRESSES
The mibII module handles a table of interface IP-addresses. These addresses are held in a

struct mibifa {

TAILQ_ENTRY(mibifa) link;

struct in_addr inaddr;

struct in_addr inmask;

struct in_addr inbcast;

struct asn_oid index;

u_int ifindex;

u_int flags;

};

The (ordered) list of IP-addresses on a given interface can be traversed by calling mib_first_ififa() and

mib_next_ififa(). The list should not be considered read-only.

INTERFACE RECEIVE ADDRESSES
The internet MIB-2 contains a table of interface receive addresses. These addresses are handled in:

struct mibrcvaddr {

TAILQ_ENTRY(mibrcvaddr) link;

struct asn_oid index;

u_int ifindex;

u_char addr[ASN_MAXOIDLEN];

size_t addrlen;

u_int flags;

};

enum {

MIBRCVADDR_VOLATILE = 0x00000001,

MIBRCVADDR_BCAST = 0x00000002,

MIBRCVADDR_HW = 0x00000004,

};

SNMP_MIBII(3) FreeBSD Library Functions Manual SNMP_MIBII(3)

FreeBSD 14.0-RELEASE-p11 January 4, 2017 FreeBSD 14.0-RELEASE-p11



Note, that the assignment of MIBRCVADDR_BCAST is based on a list of known interface types. The

flags should be handled by modules implementing interface type specific MIBs.

A receive address can be created with mib_rcvaddr_create() and deleted with mib_rcvaddr_delete().

This needs to be done only for addresses that are not automatically handled by the system.

A receive address can be found with mib_find_rcvaddr().

INTERFACE STACK TABLE
The mibII module maintains also the interface stack table. Because for complex stacks, there is no

system supported generic way of getting this information, interface type specific modules need to help

setting up stack entries. The mibII module handles only the top and bottom entries.

A table entry is created with mib_ifstack_create() and deleted with mib_ifstack_delete(). Both functions

need the pointers to the interfaces. Entries are automatically deleted if any of the interfaces of the entry

is destroyed. The functions handle both the stack table and the reverse stack table.

FILES
/usr/share/snmp/defs/mibII_tree.def The description of the MIB tree implemented by mibII.

/usr/local/share/snmp/mibs

/usr/share/snmp/mibs/ The various internet MIBs.

SEE ALSO
gensnmptree(1), snmpmod(3)

STANDARDS
This implementation conforms to the applicable IETF RFCs.

AUTHORS
Hartmut Brandt <harti@FreeBSD.org>

SNMP_MIBII(3) FreeBSD Library Functions Manual SNMP_MIBII(3)

FreeBSD 14.0-RELEASE-p11 January 4, 2017 FreeBSD 14.0-RELEASE-p11


