TIMERFD(2) FreeBSD System Calls Manual TIMERFD(2)

NAME
timerfd, timerfd_create, timerfd_gettime, timerfd_settime - timers with file descriptor semantics

LIBRARY
Standard C Library (libc, -Ic)

SYNOPSIS
#include <sy</timerfd.h>

int

timerfd_create(int clockid, int flags);

int

timerfd_gettime(int fd, struct itimerspec *curr_value);

int

timerfd_settime(int fd, int flags, const struct itimerspec * new_value, struct itimerspec *old_value);
DESCRIPTION

Thetimerfd system calls operate on timers, identified by special timerfd file descriptors. These calls are

analogous to timer _create(), timer_gettime(), and timer_settime() per-process timer functions, but use a
timerfd descriptor in place of timerid.

All timerfd descriptors possess traditional file descriptor semantics; they may be passed to other
processes, preserved across fork(2), and monitored via kevent(2), poll(2), or select(2). When atimerfd

descriptor is no longer needed, it may be disposed of using close(2).

timerfd_create() Initialize atimerfd object and return itsfile descriptor. The clockid argument
specifies the clock used as atiming base and may be:

CLOCK_REALTIME Increments as awall clock should.
CLOCK_MONOTONIC Increments monotonically in Sl seconds.

The flags argument may contain the result of or’ing the following values:

TFD_CLOEXEC The newly generated file descriptor will close-on-exec.
TFD_NONBLOCK Do not block on read/write operations.

timerfd_gettime() Retrieve the current state of the timer denoted by fd. The result isstored in
curr_value asastruct itimerspec. Theit_value and it_interval members of

FreeBSD 14.0-RELEASE-p11 May 21, 2023 FreeBSD 14.0-RELEASE-p11

TIMERFD(2) FreeBSD System Calls Manual TIMERFD(2)

curr_value represent the relative time until the next expiration and the interval
reload value last set by timerfd_settime(), respectively.

timerfd_settime() Update the timer denoted by fd with the struct itimerspec in new_value. The
it_value member of new_value should contain the amount of time before the timer
expires, or zero if the timer should be disarmed. Theit_interval member should
contain the reload time if an interval timer is desired.

The previous timer state will be stored in old_value given old_value is not NULL.
The flags argument may contain the result of or’ing the following values:

TFD_TIMER_ABSTIME Expiration will occur at the absolute time
provided in new_value. Normally, new_value
represents a relative time compared to the
timer’s clockid clock.

TFD_TIMER_CANCEL_ON_SET If clockid has been set to CLOCK_REALTIME
and the realtime clock has experienced a
discontinuous jump, then the timer will be
canceled and the next read(2) will fail with
ECANCELED.

File operations have the following semantics:

read(2)
Transfer the number of timer expirations that have occurred since the last successful read(2) or
timerfd_settime() into the output buffer of size uint64 t. If the expiration counter is zero, read(2)
blocks until atimer expiration occurs unless TFD_NONBLOCK is set, where EAGAIN is
returned.

poll(2)
The file descriptor is readable when its timer expiration counter is greater than zero.

ioctl(2)

FIOASYNC int
A non-zero input will set the FASYNC flag. A zero input will clear the FASYNC

flag.

FIONBIO int

FreeBSD 14.0-RELEASE-p11 May 21, 2023 FreeBSD 14.0-RELEASE-p11

TIMERFD(2) FreeBSD System Calls Manual TIMERFD(2)

A non-zero input will set the FNONBLOCK flag. A zero input will clear the
FNONBLOCK flag.

RETURN VALUES
Thetimerfd_create() system call creates atimerfd object and returnsitsfile descriptor. If an error
occurs, -1 is returned and the global variable errnois set to indicate the error.

Thetimerfd_gettime() and timerfd_settime() system calls return 0 on success. If an error occurs, -1 is
returned and the global variable errno is set to indicate the error.

ERRORS
Thetimerfd_create() system cal failsif:

[EINVAL] The specified clockid is not supported.

[EINVAL] The provided flags are invalid.

[EMFILE] The per-process descriptor tableisfull.

[ENFILE] The system file table isfull.

[ENOMEM] The kernel failed to allocate enough memory for the timer.

Both timerfd_gettime() and timerfd_settime() system callsfail if:

[EBADF] The provided fd isinvalid.
[EFAULT] The addresses provided by curr_value, new_value, or old value are invalid.
[EINVAL] The provided fd is valid, but was not generated by timerfd_create().

The following errors only apply to timerfd_settime():
[EINVAL] The provided flags are invalid.

[EINVAL] A nanosecond field in the new_value argument specified a value less than zero, or
greater than or equal to 10"9.

[ECANCELED] The timer was created with the clock ID CLOCK_REALTIME, was configured
withthe TFD_TIMER_CANCEL_ON_SET flag, and the system realtime clock

FreeBSD 14.0-RELEASE-p11 May 21, 2023 FreeBSD 14.0-RELEASE-p11

TIMERFD(2) FreeBSD System Calls Manual TIMERFD(2)

experienced a discontinuous change without being read.
A read from atimerfd object failsif:

[EAGAIN] The timer’s expiration counter is zero and the timerfd object isis set for non-
blocking I/0.

[ECANCELED] The timer was created with the clock ID CLOCK_REALTIME, was configured
withthe TFD_TIMER_CANCEL_ON_SET flag, and the system realtime clock
experienced a discontinuous change.

[EINVAL] The size of the read buffer is not large enough to hold the uint64 t sized timer
expiration counter.

SEE ALSO
eventfd(2), kqueue(2), poll(2), read(2), timer_create(2), timer_gettime(2), timer_settime(2)

STANDARDS
Thetimerfd system calls originated from Linux and are non-standard.

HISTORY
The timerfd facility was originally ported to FreeBSD’s Linux compatibility layer by Dmitry Chagin
<dchagin@FreeBSD.org> in FreeBSD 12.0. It was revised and adapted to be native by Jake Freeland
<jfree@FreeBSD.org> in FreeBSD 14.0.

FreeBSD 14.0-RELEASE-p11 May 21, 2023 FreeBSD 14.0-RELEASE-p11

