
NAME
uftdi - USB support for serial adapters based on the FTDI family of USB serial adapter chips.

SYNOPSIS
To compile this driver into the kernel, place the following lines in your kernel configuration file:

device usb
device ucom
device uftdi

Alternatively, to load the driver as a module at boot time, place the following line in loader.conf(5):

uftdi_load="YES"

DESCRIPTION
The uftdi driver provides support for various serial adapters based on the following FTDI chips:

+o FT8U100AX

+o FT8U232AM

+o FT8U232BM

+o FT232R

+o FT2232C

+o FT2232D

+o FT2232H

+o FT4232H

+o FT230X

The device is accessed through the ucom(4) driver which makes it behave like a tty(4).

Many of the supported chips provide additional functionality such as bitbang mode and the MPSSE

engine for serial bus emulation. The uftdi driver provides access to that functionality with the following

ioctl(2) calls, defined in <dev/usb/uftdiio.h>:

UFTDIIOC_RESET_IO (int)

Reset the channel to its default configuration, flush RX and TX FIFOs.

UFTDIIOC_RESET_RX (int)

Flush the RX FIFO.

UFTDIIOC_RESET_TX (int)

UFTDI(4) FreeBSD Kernel Interfaces Manual UFTDI(4)

FreeBSD 14.0-RELEASE-p11 April 26, 2017 FreeBSD 14.0-RELEASE-p11



Flush the TX FIFO.

UFTDIIOC_SET_BITMODE (struct uftdi_bitmode)

Put the channel into the operating mode specified in mode, and set the pins indicated by ones in

iomask to output mode. The mode must be one of the uftdi_bitmodes values. Setting mode to

UFTDI_BITMODE_NONE returns the channel to standard UART mode.

enum uftdi_bitmodes

{

UFTDI_BITMODE_ASYNC = 0,

UFTDI_BITMODE_MPSSE = 1,

UFTDI_BITMODE_SYNC = 2,

UFTDI_BITMODE_CPU_EMUL = 3,

UFTDI_BITMODE_FAST_SERIAL = 4,

UFTDI_BITMODE_CBUS = 5,

UFTDI_BITMODE_NONE = 0xff,

};

struct uftdi_bitmode

{

uint8_t mode;

uint8_t iomask;

};

Manuals and application notes published by FTDI describe these modes in detail. To use most of

these modes, you first put the channel into the desired mode, then you read(2) and write(2) data

which either reflects pin state or is interpreted as MPSSE commands and parameters, depending

on the mode.

UFTDIIOC_GET_BITMODE (struct uftdi_bitmode)

Return the current bitbang mode in the mode member, and the state of the DBUS0..DBUS7 pins

at the time of the call in the iomask member. The pin state can be read while the chip is in any

mode, including UFTDI_BITMODE_NONE (UART) mode.

UFTDIIOC_SET_ERROR_CHAR (int)

Set the character which is inserted into the buffer to mark the point of an error such as FIFO

overflow.

UFTDIIOC_SET_EVENT_CHAR (int)

Set the character which causes a partial FIFO full of data to be returned immediately even if the

UFTDI(4) FreeBSD Kernel Interfaces Manual UFTDI(4)

FreeBSD 14.0-RELEASE-p11 April 26, 2017 FreeBSD 14.0-RELEASE-p11



FIFO is not full.

UFTDIIOC_SET_LATENCY (int)

Set the amount of time to wait for a full FIFO, in milliseconds. If more than this much time

elapses without receiving a new character, any characters in the FIFO are returned.

UFTDIIOC_GET_LATENCY (int)

Get the current value of the latency timer.

UFTDIIOC_GET_HWREV (int)

Get the hardware revision number. This is the bcdDevice value from the usb_device_descriptor.

UFTDIIOC_READ_EEPROM (struct uftdi_eeio)

Read one or more words from the configuration eeprom. The FTDI chip performs eeprom I/O in

16-bit words. Set offset and length to values evenly divisible by two before the call, and the data

array will contain the requested values from eeprom after the call.

struct uftdi_eeio

{

uint16_t offset;

uint16_t length;

uint16_t data[64];

};

The FT232R chip has an internal eeprom. An external serial eeprom is optional on other FTDI

chips. The eeprom may contain 64, 128, or 256 words, depending on the part used. Multiple

calls may be needed to read or write the larger parts. When no eeprom is present, all words in

the returned data are 0xffff. An erased eeprom also reads as all 0xffff.

UFTDIIOC_WRITE_EEPROM (struct uftdi_eeio)

Write one or more words to the configuration eeprom. The uftdi_eeio values are as described for

UFTDIIOC_READ_EEPROM.

The FTDI chip does a blind write to the eeprom, and it will appear to succeed even when no

eeprom is present. To ensure a good write you must read back and verify the data. It is not

necessary to erase before writing. Any position within the eeprom can be overwritten at any

time.

UFTDIIOC_ERASE_EEPROM (int)

Erase the entire eeprom. This is useful primarily for test and debugging, as there is no need to

UFTDI(4) FreeBSD Kernel Interfaces Manual UFTDI(4)

FreeBSD 14.0-RELEASE-p11 April 26, 2017 FreeBSD 14.0-RELEASE-p11



erase before writing. To help prevent accidental erasure caused by calling the wrong ioctl, you

must pass the special value UFTDI_CONFIRM_ERASE as the argument to this ioctl.

HARDWARE
The uftdi driver supports the following adapters:

+o B&B Electronics USB->RS422/485 adapter

+o Elexol USB MOD1 and USB MOD3

+o HP USB-Serial adapter shipped with some HP laptops

+o Inland UAS111

+o QVS USC-1000

+o Buffalo PC-OP-RS / Kurouto-shikou KURO-RS universal remote

+o Prologix GPIB-USB Controller

FILES
/dev/ttyU* for callin ports

/dev/ttyU*.init

/dev/ttyU*.lock

corresponding callin initial-state and lock-state devices

/dev/cuaU* for callout ports

/dev/cuaU*.init

/dev/cuaU*.lock

corresponding callout initial-state and lock-state devices

SEE ALSO
tty(4), ucom(4), usb(4)

HISTORY
The uftdi driver appeared in FreeBSD 4.8 from NetBSD 1.5.

UFTDI(4) FreeBSD Kernel Interfaces Manual UFTDI(4)

FreeBSD 14.0-RELEASE-p11 April 26, 2017 FreeBSD 14.0-RELEASE-p11


