
NAME
vm_page_alloc - allocate a page of memory

SYNOPSIS
#include <sys/param.h>
#include <vm/vm.h>
#include <vm/vm_page.h>

vm_page_t

vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req);

vm_page_t

vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex, int req, vm_page_t mpred);

vm_page_t

vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req, u_long npages,

vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,

vm_memattr_t memattr);

vm_page_t

vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int req, u_long npages,

vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,

vm_memattr_t memattr);

vm_page_t

vm_page_alloc_domain(vm_object_t object, vm_pindex_t pindex, int domain, int req);

vm_page_t

vm_page_alloc_domain_after(vm_object_t object, vm_pindex_t pindex, int domain, int req,

vm_page_t mpred);

vm_page_t

vm_page_alloc_freelist(int freelist, int req);

vm_page_t

vm_page_alloc_freelist_domain(int domain, int freelist, int req);

vm_page_t

vm_page_alloc_noobj(int req);

VM_PAGE_ALLOC(9) FreeBSD Kernel Developer’s Manual VM_PAGE_ALLOC(9)

FreeBSD 14.0-RELEASE-p11 November 11, 2021 FreeBSD 14.0-RELEASE-p11



vm_page_t

vm_page_alloc_noobj_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high,

u_long alignment, vm_paddr_t boundary, vm_memattr_t memattr);

vm_page_t

vm_page_alloc_noobj_contig_domain(int domain, int req, u_long npages, vm_paddr_t low,

vm_paddr_t high, u_long alignment, vm_paddr_t boundary, vm_memattr_t memattr);

vm_page_t

vm_page_alloc_noobj_domain(int domain, int req);

DESCRIPTION
The vm_page_alloc() family of functions allocate one or more pages of physical memory. Most kernel

code should not call these functions directly but should instead use a kernel memory allocator such as

malloc(9) or uma(9), or should use a higher-level interface to the page cache, such as vm_page_grab(9).

All of the functions take a req parameter which encodes the allocation priority and optional modifier

flags, described below. The functions whose names do not include "noobj" additionally insert the pages

starting at index pindex in the VM object object. The object must be write-locked and not have a page

already resident at the specified index. The functions whose names include "domain" support NUMA-

aware allocation by returning pages from the numa(4) domain specified by domain.

The vm_page_alloc_after() and vm_page_alloc_domain_after() functions behave identically to

vm_page_alloc() and vm_page_alloc_domain(), respectively, except that they take an additional

parameter mpred which must be the page resident in object with largest index smaller than pindex, or

NULL if no such page exists. These functions exist to optimize the common case of loops that allocate

multiple pages at successive indices within an object.

The vm_page_alloc_contig() and vm_page_alloc_noobj_contig() functions and their NUMA-aware

variants allocate a physically contiguous run of npages pages which satisfies the specified constraints.

The low and high parameters specify a physical address range from which the run is to be allocated.

The alignment parameter specifies the requested alignment of the first page in the run and must be a

power of two. If the boundary parameter is non-zero, the pages constituting the run will not cross a

physical address that is a multiple of the parameter value, which must be a power of two. If memattr is

not equal to VM_MEMATTR_DEFAULT, then mappings of the returned pages created by, e.g.,

pmap_enter(9) or pmap_qenter(9), will carry the machine-dependent encoding of the memory attribute.

Additionally, the direct mapping of the page, if any, will be updated to reflect the requested memory

attribute.

The vm_page_alloc_freelist() and vm_page_alloc_freelist_domain() functions behave identically to

VM_PAGE_ALLOC(9) FreeBSD Kernel Developer’s Manual VM_PAGE_ALLOC(9)

FreeBSD 14.0-RELEASE-p11 November 11, 2021 FreeBSD 14.0-RELEASE-p11



vm_page_alloc_noobj() and vm_page_alloc_noobj_domain(), respectively, except that a successful

allocation will return a page from the specified physical memory freelist. These functions are not

intended for use outside of the virtual memory subsystem and exist only to support the requirements of

certain platforms.

REQUEST FLAGS
All page allocator functions accept a req parameter that governs certain aspects of the function’s

behavior.

The VM_ALLOC_WAITOK, VM_ALLOC_WAITFAIL, and VM_ALLOC_NOWAIT flags specify

the behavior of the allocator if free pages could not be immediately allocated. The

VM_ALLOC_WAITOK flag can only be used with the "noobj" variants. If VM_ALLOC_NOWAIT is

specified, then the allocator gives up and returns NULL. VM_ALLOC_NOWAIT is specified implicitly

if none of the flags are present in the request. If either VM_ALLOC_WAITOK or

VM_ALLOC_WAITFAIL is specified, the allocator will put the calling thread to sleep until sufficient

free pages become available. At this point, if VM_ALLOC_WAITFAIL is specified the allocator will

return NULL, and if VM_ALLOC_WAITOK is specified the allocator will retry the allocation. After a

failed VM_ALLOC_WAITFAIL allocation returns, the VM object, if any, will have been unlocked

while the thread was sleeping. In this case the VM object write lock will be re-acquired before the

function call returns.

req also encodes the allocation request priority. By default the page(s) are allocated with no special

treatment. If the number of available free pages is below a certain watermark, the allocation will fail or

the allocating thread will sleep, depending on the specified wait flag. The watermark is computed at

boot time and corresponds to a small (less than one percent) fraction of the system’s total physical

memory. To allocate memory more aggressively, one of following flags may be specified.

VM_ALLOC_SYSTEM The page can be allocated if the free page count is above the interrupt

reserved water mark. This flag should be used only when the system

really needs the page.

VM_ALLOC_INTERRUPT The allocation will fail only if zero free pages are available. This flag

should be used only if the consequences of an allocation failure are worse

than leaving the system without free memory. For example, this flag is

used when allocating kernel page table pages, where allocation failures

trigger a kernel panic.

The following optional flags can further modify allocator behavior:

VM_ALLOC_SBUSY The returned page will be shared-busy. This flag may only be specified when

VM_PAGE_ALLOC(9) FreeBSD Kernel Developer’s Manual VM_PAGE_ALLOC(9)

FreeBSD 14.0-RELEASE-p11 November 11, 2021 FreeBSD 14.0-RELEASE-p11



allocating pages in a VM object.

VM_ALLOC_NOBUSY The returned page will not be busy. This flag is implicit when allocating

pages without a VM object. When allocating pages in a VM object, and

neither VM_ALLOC_SBUSY nor VM_ALLOC_NOBUSY are specified, the

returned pages will be exclusively busied.

VM_ALLOC_NODUMP

The returned page will not be included in any kernel core dumps regardless of

whether or not it is mapped in to KVA.

VM_ALLOC_WIRED The returned page will be wired.

VM_ALLOC_ZERO If this flag is specified, the "noobj" variants will return zeroed pages. The

other allocator interfaces ignore this flag.

VM_ALLOC_NORECLAIM

If this flag is specified and the request can not be immediately satisfied, the

allocator will not attempt to break superpage reservations to satisfy the

allocation. This may be useful when the overhead of scanning the reservation

queue outweighs the cost of a failed allocation. This flag may be used only

with the "contig" variants, and must not be specified in combination with

VM_ALLOC_WAITOK.

VM_ALLOC_COUNT(n)

Hint that at least n pages will be allocated by the caller in the near future. n

must be no larger than 65535. If the system is short of free pages, this hint

may cause the kernel to reclaim memory more aggressively than it would

otherwise.

RETURN VALUES
If the allocation was successful, a pointer to the struct vm_page corresponding to the allocated page is

returned. If the allocation request specified multiple pages, the returned pointer points to an array of

struct vm_page constituting the run. Upon failure, NULL is returned. Regardless of whether the

allocation succeeds or fails, the VM object object will be write-locked upon return.

SEE ALSO
numa(4), malloc(9), uma(9), vm_page_grab(9), vm_page_sbusy(9)

AUTHORS

VM_PAGE_ALLOC(9) FreeBSD Kernel Developer’s Manual VM_PAGE_ALLOC(9)

FreeBSD 14.0-RELEASE-p11 November 11, 2021 FreeBSD 14.0-RELEASE-p11



This manual page was written by Chad David <davidc@acns.ab.ca>.

VM_PAGE_ALLOC(9) FreeBSD Kernel Developer’s Manual VM_PAGE_ALLOC(9)

FreeBSD 14.0-RELEASE-p11 November 11, 2021 FreeBSD 14.0-RELEASE-p11


