warnings(3) Perl Programmers Reference Guide warnings(3)

NAME
warnings - Perl pragmato control optional warnings

SYNOPSIS
use warnings;
no warnings,

use warnings "all";
no warnings "uninitialized";

or equivalent to those last two ...
use warnings qw(al -uninitialized);

use warnings::register;
if (warnings::enabled()) {
warnings::warn("some warning");

}

if (warnings::enabled("void")) {

warnings::warn("void", "some warning");

}

if (warnings::enabled($object)) {
warnings::warn($object, "some warning");

}

warnings.:warnif("some warning");

warnings::warnif("void", "some warning");
warnings.:warnif($object, "some warning");

DESCRIPTION
The "warnings' pragma gives control over which warnings are enabled in which parts of a Perl
program. It’'samore flexible aternative for both the command line flag -w and the equivalent Perl
variable, $"W.

This pragmaworks just like the "strict” pragma. This means that the scope of the warning pragmais
limited to the enclosing block. It also means that the pragma setting will not leak acrossfiles (via
"use", "require” or "do"). Thisalows authorsto independently define the degree of warning checks
that will be applied to their module.

perl v5.34.3 2023-11-28 warnings(3)

warnings(3) Perl Programmers Reference Guide warnings(3)

By default, optional warnings are disabled, so any legacy code that doesn’t attempt to control the
warnings will work unchanged.

All warnings are enabled in ablock by either of these:

use warnings;
use warnings’al’;

Similarly all warnings are disabled in a block by either of these:

no warnings,
no warnings’'all’;

For example, consider the code below:

use warnings;
my @x;
{
no warnings,
my $y = @x[0];
}
my $z = @x[0];

The code in the enclosing block has warnings enabled, but the inner block has them disabled. Inthis
case that means the assignment to the scalar $z will trip the "Scalar value @x[0] better written as
$X[0]" warning, but the assignment to the scalar $y will not.

Default Warnings and Optional Warnings
Before the introduction of lexical warnings, Perl had two classes of warnings: mandatory and optional.

Asits name suggests, if your code tripped a mandatory warning, you would get a warning whether you
wanted it or not. For example, the code below would always produce an "isn’'t numeric" warning about
the"2:".

my $x ="2:" + 3;
With the introduction of Iexical warnings, mandatory warnings now become default warnings. The
differenceis that although the previously mandatory warnings are still enabled by default, they can

then be subsequently enabled or disabled with the lexical warning pragma. For example, in the code
below, an "isn’'t numeric" warning will only be reported for the $x variable.

perl v5.34.3 2023-11-28 warnings(3)

warnings(3) Perl Programmers Reference Guide warnings(3)

my $x ="2." + 3,
no warnings,
my $y ="2:" + 3,

Note that neither the -w flag or the $*W can be used to disable/enable default warnings. They are till
mandatory in this case.

" Negative war nings'
As a convenience, you can (as of Perl 5.34) pass arguments to the "import()" method both positively
and negatively. Negative warnings are those with a"-" sign prepended to their names; positive
warnings are anything else. This|lets you turn on some warnings and turn off othersin one command.

So, assuming that you' ve already turned on a bunch of warnings but want to tweak them a bit in some
block, you can do this:

{

use warnings gw(uninitialized -redefine);

which is equivaent to:

{
use warnings gw(uninitialized);
no warnings gw(redefine);

The argument list is processed in the order you specify. So, for example, if you don’t want to be
warned about use of experimental features, except for "somefeature” that you really dislike, you can
say this:

use warnings gw(all -experimental experimental::somefeature);
which is equivaent to:

usewarnings'al’;

no warnings ’'experimental’;

use warnings ' experimental ::somefeature’;

What’swrong with -w and $*W

perl v5.34.3 2023-11-28 warnings(3)

warnings(3) Perl Programmers Reference Guide warnings(3)

Although very useful, the big problem with using -w on the command line to enable warnings is that it
isal or nothing. Take thetypical scenario when you are writing a Perl program. Parts of the code you
will write yourself, but it’ s very likely that you will make use of pre-written Perl modules. If you use
the -w flag in this case, you end up enabling warnings in pieces of code that you haven't written.

Similarly, using $*W to either disable or enable blocks of code is fundamentally flawed. For a start,
say you want to disable warningsin ablock of code. Y ou might expect this to be enough to do the

trick:
{
local ($"W) = 0;
my $x =+ 2;
my 3y; chop $y;
}

When this codeis run with the -w flag, awarning will be produced for the $x line: "Reversed +=
operator".

The problem is that Perl has both compile-time and run-time warnings. To disable compile-time
warnings you need to rewrite the code like this:

{
BEGIN { $*"W =0}
my $x =+ 2;
my 3y; chop $y;

}

And note that unlike the first example, thiswill permanently set $*W since it cannot both run during
compile-time and be localized to a run-time block.

The other big problem with $*W is the way you can inadvertently change the warning setting in
unexpected placesin your code. For example, when the code below is run (without the -w flag), the
second call to "doit" will trip a"Use of uninitialized value" warning, whereas the first will not.

sub doit

{
my $y; chop $y;
}

doit();

perl v5.34.3 2023-11-28 warnings(3)

warnings(3) Perl Programmers Reference Guide warnings(3)

{
local ($"W) =1,
doit()

}

Thisisaside-effect of $"W being dynamically scoped.

Lexica warnings get around these limitations by allowing finer control over where warnings can or
can't be tripped.

Controlling War nings from the Command Line
There are three Command Line flags that can be used to control when warnings are (or aren't)
produced:

-W

-X

Thisis theexisting flag. If the lexical warnings pragmais not used in any of your code, or any
of the modules that you use, this flag will enable warnings everywhere. See "Backward
Compatibility" for details of how this flag interacts with lexical warnings.

If the -W flag is used on the command line, it will enable all warnings throughout the program
regardless of whether warnings were disabled locally using "no warnings' or "$'W =0". This
includes all files that get included via"use", "require” or "do". Think of it as the Perl equivalent
of the"lint" command.

Does the exact opposite to the -W flag, i.e. it disables all warnings.

Backward Compatibility
If you are used to working with aversion of Perl prior to the introduction of lexically scoped warnings,
or have code that uses both lexical warnings and $*W, this section will describe how they interact.

How Lexical Warnings interact with -w/$"\W:

If none of the three command line flags (-w, -W or -X) that control warningsis used and neither
$*W nor the "warnings' pragma are used, then default warnings will be enabled and optional
warnings disabled. This means that legacy code that doesn’t attempt to control the warnings will
work unchanged.

The -w flag just sets the global $'W variable asin 5.005. This means that any legacy code that
currently relies on manipulating $*W to control warning behavior will still work asis.

Apart from now being a boolean, the $*W variable operates in exactly the same horrible

perl v5.34.3 2023-11-28 warnings(3)

warnings(3) Perl Programmers Reference Guide warnings(3)

uncontrolled global way, except that it cannot disable/enable default warnings.

4, If apiece of codeis under the control of the "warnings' pragma, both the $*W variable and the
-w flag will be ignored for the scope of the lexical warning.

5. Theonly way to override alexical warnings setting is with the -W or -X command line flags.

The combined effect of 3 & 4 isthat it will allow code which uses the "warnings' pragmato control the
warning behavior of $W-type code (using a"local $'W=0") if it really wants to, but not vice-versa.

Category Hierarchy
A hierarchy of "categories' have been defined to allow groups of warnings to be enabled/disabled in
isolation.

The current hierarchy is:

al -+
I

+- closure

I
+- deprecated

+- exiting

+- experimental --+

+- experimental::alpha_assertions

+- experimental ::bitwise

I

I

I

I

I I

| +- experimental::const_attr

I I

| +- experimental::declared_refs
I I

| +- experimental:;isa
I

I

I

I

I

+- experimental ::lexical_subs

+- experimental ::postderef

perl v5.34.3 2023-11-28 warnings(3)

warnings(3)

perl v5.34.3

+-
I
+-
I
+-

+- experimental

+- experimental::

+- experimental::

+- experimental::

+- experimental:

+- experimental:

+- experimental:

+- experimental:

+- experimental::

+- experimental:

+- experimental:

imprecision

+- exec

I

+- layer

I

+- newline
|

+- pipe

|

+- syscalls
I

Perl Programmers Reference Guide

;.private_use

re strict
refaliasing
regex_sets
:script_run
:signatures
:smartmatch

;try
uniprop_wildcards
vib

'win32_perlio

2023-11-28

warnings(3)

warnings(3)

warnings(3)

Perl Programmers Reference Guide
| +- unopened
I
+- locale
I
+- misc
I
+- missing
I
+- numeric
I
+- once
I
+- overflow
I
+- pack
I
+- portable
I
+- recursion
I
+- redefine
I
+- redundant
I
+- regexp
I
+- severe -------- +
I I
| +- debugging
I I
| +- inplace
I I
| +- internal
I I
| +- malloc
I

- shadow

perl v5.34.3 2023-11-28

warnings(3)

warnings(3)

warnings(3) Perl Programmers Reference Guide warnings(3)

+- ambiguous

+- bareword

I

+- digit

I

+- illegaproto
|

|

|

I

I

I

I

I

|

|

| +- parenthesis
I I

| +- precedence
I I

| +- printf
I

I

|

|

|

I

I

I

I

I
+- prototype

|
+- oW
|

+- reserved

+- semicolon

perl v5.34.3 2023-11-28 warnings(3)

warnings(3) Perl Programmers Reference Guide warnings(3)

Just like the "strict" pragma any of these categories can be combined

use warnings gw(void redefine);
no warnings qw(io syntax untie);

Also like the "strict" pragma, if there is more than one instance of the "warnings' pragmain agiven
scope the cumulative effect is additive.

use warnings gw(void); # only "void" warnings enabled
use warningsgw(io); #only "void" & "io" warnings enabled
no warnings gw(void); # only "io" warnings enabled
To determine which category a specific warning has been assigned to see perldiag.

Note: Before Perl 5.8.0, the lexical warnings category "deprecated" was a sub-category of the "syntax”
category. It isnow atop-level category initsown right.

Note: Before 5.21.0, the "missing" lexical warnings category was internally defined to be the same as
the "uninitialized" category. It is now atop-level category in itsown right.

Fatal Warnings
The presence of theword "FATAL" in the category list will escalate warnings in those categoriesinto
fatal errorsin that lexical scope.
NOTE: FATAL warnings should be used with care, particularly "FATAL =>"dl’".
Libraries using warnings::warn for custom warning categories generally don’t expect warnings::warn
to befatal and can wind up in an unexpected state asaresult. For XS modules issuing categorized

warnings, such unanticipated exceptions could also expose memory leak bugs.

Moreover, the Perl interpreter itself has had serious bugs involving fatalized warnings. For a summary
of resolved and unresolved problems as of January 2015, please see this perl5-porters post

perl v5.34.3 2023-11-28 warnings(3)

warnings(3) Perl Programmers Reference Guide warnings(3)

<http://www.nntp.perl.org/group/perl.perl 5.porters/2015/01/msg225235.htmi >.

While some developers find fatalizing some warnings to be a useful defensive programming technique,
using "FATAL =>"all’" to fatalize all possible warning categories -- including custom ones -- is
particularly risky. Therefore, theuse of "FATAL =>"all"" is discouraged.

The strictures module on CPAN offers one example of awarnings subset that the modul€’ s authors
believeisrdatively safe to fatalize.

NOTE: Usersof FATAL warnings, especially those using "FATAL =>"all’", should be fully aware
that they are risking future portability of their programs by doing so. Perl makes absolutely no
commitments to not introduce new warnings or warnings categories in the future; indeed, we explicitly
reserve the right to do so. Code that may not warn now may warn in a future release of Perl if the Perl5
devel opment team deemsiit in the best interests of the community to do so. Should code using FATAL
warnings break due to the introduction of a new warning we will NOT consider it an incompatible
change. Users of FATAL warnings should take special caution during upgrades to check to see if their
code triggers any new warnings and should pay particular attention to the fine print of the
documentation of the features they use to ensure they do not exploit features that are documented as
risky, deprecated, or unspecified, or where the documentation says "so don't do that", or anything with
the same sense and spirit. Use of such features in combination with FATAL warningsis ENTIRELY
AT THE USER’'SRISK.

The following documentation describes how to use FATAL warnings but the perl5 porters strongly
recommend that you understand the risks before doing so, especially for library code intended for use
by others, as there is no way for downstream users to change the choice of fatal categories.

In the code below, the use of "time", "length" and "join" can all produce a"Useless use of xxx in void
context” warning.

use warnings;
time;
{
use warnings FATAL => qw(void);

length "abc";
}

join"™ 1,23;

perl v5.34.3 2023-11-28 warnings(3)

warnings(3) Perl Programmers Reference Guide warnings(3)

print "done\n";
When run it produces this output

Useless use of timein void context at fatal line 3.
Useless use of length in void context at fatal line 7.

The scope where "length” is used has escalated the "void" warnings category into afatal error, so the
program terminates immediately when it encounters the warning.

To explicitly turn off a"FATAL" warning you just disable the warning it is associated with. So, for
example, to disable the "void" warning in the example above, either of these will do the trick:

no warnings qw(void);
no warnings FATAL => qw(void);

If you want to downgrade a warning that has been escalated into afatal error back to a normal warning,
you can use the "NONFATAL" keyword. For example, the code below will promote al warnings into
fatal errors, except for thosein the "syntax" category.

use warnings FATAL =>"all’, NONFATAL =>"syntax’;
Asof Perl 5.20, instead of "use warnings FATAL =>"dl’;" you can use:

usevb.20; #Perl 5.20 or greater isrequired for the following
usewarnings'FATAL’; # short form of "usewarnings FATAL =>"dl’;"

However, you should still heed the guidance earlier in this section against using "use warnings FATAL
="l ;>

If you want your program to be compatible with versions of Perl before 5.20, you must use "use
warnings FATAL =>"all’;" instead. (In previous versions of Perl, the behavior of the statements "use
warnings’'FATAL’;", "use warnings'NONFATAL’;" and "no warnings’ FATAL’;" was unspecified;
they did not behave asif they included the "=>"all’" portion. Asof 5.20, they do.)

Reporting War nings from a Module
The "warnings" pragma provides a number of functions that are useful for module authors. These are
used when you want to report a module-specific warning to a calling module has enabled warnings via
the "warnings' pragma.

perl v5.34.3 2023-11-28 warnings(3)

warnings(3) Perl Programmers Reference Guide warnings(3)

Consider the module "MyMod::Abc" below.
package MyMod::Abc;
use warnings::register;

sub open {
my $path = shift;
if ($path !~ m##) {
warnings::warn("changing relative path to /var/abc")
if warnings::enabled();
$path = "/var/abc/$path";
}
}

The call to "warnings::register" will create a new warnings category called "MyMod::Abc", i.e. the new
category name matches the current package name. The "open" function in the module will display a
warning message if it gets given arelative path as aparameter. Thiswarningswill only be displayed if
the code that uses "MyMod::Abc" has actually enabled them with the "warnings' pragma like below.

use MyMod::Abc;
use warnings’ MyMod::Abc’;

abc::open("../fred.txt");

It is also possible to test whether the pre-defined warnings categories are set in the calling module with
the "warnings::enabled" function. Consider this snippet of code:

package MyMod::Abc;

sub open {
if (warnings::enabled("deprecated")) {
warnings::warn("deprecated"”,
"open is deprecated, use new instead");
}
new(@.);
}

perl v5.34.3 2023-11-28 warnings(3)

warnings(3) Perl Programmers Reference Guide warnings(3)

sub new

1
The function "open" has been deprecated, so code has been included to display awarning message
whenever the calling module has (at |east) the "deprecated” warnings category enabled. Something

likethis, say.

use warnings ' deprecated’;
use MyMod::Abc;

MyMod::Abc::open($filename);
Either the "warnings::warn" or "warnings::warnif" function should be used to actualy display the
warnings message. Thisis because they can make use of the feature that alows warnings to be

escalated into fatal errors. So in this case

use MyMod::Abc;
use warnings FATAL =>'MyMod::Abc’;

MyMod::Abc::open(’../fred.txt’);
the "warnings::warnif" function will detect this and die after displaying the warning message.
The three warnings functions, "warnings::warn", "warnings.:warnif" and "warnings::enabled" can
optionally take an object reference in place of a category name. In this case the functions will use the
class name of the object as the warnings category.
Consider this example:

package Original;

no warnings;
use warnings::register;

sub new

{
my $class = shift;
bless[], $class;

}

perl v5.34.3 2023-11-28 warnings(3)

warnings(3) Perl Programmers Reference Guide warnings(3)

sub check

{
my $self = shift;
my $value = shift;

if (Svalue % 2 & & warnings::enabled($self))
{ warnings::warn($self, "Odd numbers are unsafe”) }

sub doit

{
my $self = shift;
my $value = shift;
$self->check($value);
#...

1
package Derived;

use warnings::register;

use Original;

our @ISA =gw(Origina);

sub new

{
my $class = shift;
bless[], $class;

}

The code below makes use of both modules, but it only enables warnings from "Derived".

use Original;

use Derived;

use warnings’Derived’;
my $x = Original->new();
$x->doit(1);

perl v5.34.3 2023-11-28 warnings(3)

warnings(3) Perl Programmers Reference Guide warnings(3)

my $y = Derived->new();
$x->doit(1);

When this code is run only the "Derived" object, $y, will generate awarning.
Odd numbers are unsafe at main.pl line 7
Notice also that the warning is reported at the line where the object is first used.

When registering new categories of warning, you can supply more names to warnings::register like
this:

package MyModule;
use warnings::register qw(format precision);

warnings.:warnif(' MyModule::format’, ’...");

FUNCTIONS
Note: The functions with namesending in"_at_level" were added in Perl 5.28.

use warnings::register
Creates a new warnings category with the same name as the package where the call to the pragma

isused.

war nings::enabled()
Use the warnings category with the same name as the current package.

Return TRUE if that warnings category is enabled in the calling module. Otherwise returns
FALSE.

warnings::enabled($category)
Return TRUE if the warnings category, $category, is enabled in the calling module. Otherwise
returns FALSE.

warnings::enabled($object)
Use the name of the class for the object reference, $object, as the warnings category.

Return TRUE if that warnings category is enabled in the first scope where the object is used.

perl v5.34.3 2023-11-28 warnings(3)

warnings(3) Perl Programmers Reference Guide warnings(3)

Otherwise returns FALSE.

warnings::enabled _at_level($category, $level)
Like "warnings::enabled", but $level specifiesthe exact call frame, 0 being the immediate caller.

war nings::fatal_enabled()
Return TRUE if the warnings category with the same name as the current package has been set to
FATAL inthe calling module. Otherwise returns FALSE.

warnings::fatal _enabled($category)
Return TRUE if the warnings category $category has been set to FATAL in the calling module.
Otherwise returns FALSE.

warnings::fatal_enabled($object)
Use the name of the class for the object reference, $object, as the warnings category.

Return TRUE if that warnings category has been set to FATAL in the first scope where the object
isused. Otherwisereturns FALSE.

warnings::fatal_enabled at_level ($category, $level)
Like "warnings::fatal_enabled", but $level specifies the exact call frame, 0 being the immediate

cdler.

warnings.:warn($message)
Print $message to STDERR.

Use the warnings category with the same name as the current package.

If that warnings category has been set to "FATAL" in the calling module then die. Otherwise
return.

warnings::warn($category, $message)
Print $message to STDERR.

If the warnings category, $category, has been set to "FATAL" in the calling module then die.
Otherwise return.

warnings::warn($object, $message)
Print $message to STDERR.

perl v5.34.3 2023-11-28 warnings(3)

warnings(3) Perl Programmers Reference Guide warnings(3)

Use the name of the class for the object reference, $object, as the warnings category.

If that warnings category has been set to "FATAL" in the scope where $object isfirst used then
die. Otherwise return.

warnings::warn_at_level ($category, $level, $message)
Like "warnings::warn", but $level specifies the exact call frame, 0 being the immediate caller.

warnings::warnif($message)
Equivalent to:

if (warnings::enabled())
{ warnings::warn($message) }

warnings::warnif($category, $message)
Equivalent to:

if (warnings::enabled($category))
{ warnings::warn($category, $message) }

warnings::warnif($object, $message)
Equivalent to:

if (warnings::enabled($object))
{ warnings::warn($object, $message) }

warnings::warnif_at_level ($category, $level, $message)
Like "warnings::warnif", but $level specifiesthe exact call frame, 0 being the immediate caller.

warnings::register_categories(@names)
This registers warning categories for the given names and is primarily for use by the

warnings::register pragma.

See also "Pragmatic Modules" in perimodlib and perldiag.

perl v5.34.3 2023-11-28 warnings(3)

